Меню Рубрики

Аминокислоты которые могут образовываться в печени

Переваривание белков в желудке и тонком кишечнике. Пищеварительные ферменты.

Основные этапы переваривания и всасывания пищи.

Основные пути метаболизма аминокислот в печени.

Переваривание белков в желудке и тонком кишечнике. Пищеварительные ферменты.

4. Врождённое нарушение аминокислотного обмена у человека. Пищевая аллергия.

Пищеварение в желудке происходит в течение нескольких часов под действием желудочного сока. Чистый желудочный сок представляет собой бесцветную прозрачную жидкость, которая содержит HCl и поэтому имеет кислую реакцию среды — pH = 1,3. Концентрация HCl = 0,4-0,5%.

Протеазами желудочного сока являются: пепсин, расщепляющий белки до полипептидов различной степени сложности, гастриксин, дополняющий действия пепсина, желатиназа, расщепляющая желатин, то есть белки, содержащиеся в соединительной ткани – хрящах и сухожилиях.

В процессе переваривания пищи в желудке большую роль играет HCl желудочного сока. Соляная кислота, во – первых, создаёт такую концентрацию ионов H в желудке, при которой пепсин и гастриксин максимально активен. Во – вторых, она вызывает денатурацию и набухание белков, и тем самым способствует их частичному расщеплению протеазами. В – третьих, она способствует вствораживанию молока.

Установлено, что секреция желудочного сока зависит от характера питания. При длительном употреблении преимущественно углеводной пищи (хлеба, картофеля, овощей) секреция желудочного сока снижается, и наоборот повышается при постоянном употреблении высоко белковой пищи (мясо). Это касается как объёма желудочного сока, так и его кислотности.

Обычно пища находится в желудке 6 – 8 часов. Пища богатая углеводами эвакуируется быстрее, чем богатая белками.

Содержимое желудка переходит в кишечник, когда его консистенция становиться жидкой или полужидкой.

В 12 – перстной кишке пища подвергается действию поджелудочного сока, желчи, а также соку, находящегося в слизистой оболочке этой кишки специальных желёз. pH чистого поджелудочного сока человека составляет 7,8 — 8,4. Щелочная реакция среды обусловлена присутствием в нем гидрокарбонатов.

В поджелудочном соке имеются ферменты, расщепляющие белки и полипептиды (трипсин, химотрепсин, эластаза, карбоксипептидазы и аминопептидазы). Трипсин, химотрипсин и зластаза расщепляют как сами белки, так и продукты их распада — полипептиды. При этом образуются низкомолекулярные пептиды. Эти ферменты действуют на различные пептидные связи, дополняя друг друга, и такие образования обладают способностью расщеплять почти все пептидные связи в молекулах различных пищевых белков до свободных аминокислот.

Переваривание белков в кишечнике продолжается и дополняет пептическое переваривание, происходящее в желудке. Действие пепсина в 12 – перстной кишке прекращается.

Карбоксипептидазы и аминопептидазы катализируют отщепление от молекул полипептидов концевых аминокислот. Ферментативный состав поджелудочного сока изменяется в зависимости от характера питания. При богатой белками мяса диете увеличивается активность пепсина и других протеолитических ферментов. Вдоль всей внутренней оболочки тонкого кишечника расположены либеркюновы железы, которые вырабатывают и секретируют кишечный сок, имеющий щелочную реакцию. Кишечный сок содержит энтерокиназу, которая является ферментом актоватором всех протолитических ферментов поджелудочного сока. Кроме энтерокиназы в кишечном соке содержаться ферменты, действующие на полипептиды, образующиеся при расщеплении белка в желудке и 12 – перстной кишке. Эта смесь пептидаз в которую входят аминопептидазы, карбоксипептидазы и др.

После сложных процессов переваривания происходит всасывание в лимфу и кровь низкомолекулярных соединений, в том числе аминокислот, которые с кровью воротной вены поступают в печень.

— транспорт в другие ткани;

Аминокислоты из печени могут поступать в систему кровообращения и, таким образом, поставляться в другие органы, а также использоваться в качестве структурных белков для биосинтеза тканевых белков.

— биосинтез белков печени и плазма крови;

Белки печени подвергаются постоянному обновлению, причём для них характерно очень высокая скорость оборота со средним периодом полужизни всего лишь несколько дней. Кроме того, именно в печени синтезируется больше белков плазмы крови.

дизаминирование и распад;

Аминокислоты, которые не были использованы в печени, подвергаются дизаминированию и распадаются с образованием ацетил-СоА и промежуточных субстратов лимонной кислоты, последние могут превращаться в глюкозу и гликоген путём глюконеогинеза. Ацетил-СоА либо подвергается окислению в цикле лимонной кислоты, с накоплением энергии запасаемой в форме АТФ, либо превращается в липиды, которые откладываются в запас. Высвобождённые при распаде аминокислоты и аммиак превращаются в мочевину, в ходе протекающего в печени цикла мочевины.

-цикл глюкозааланин;

Печень участвует так же в метаболизме аминокислот поступающих, время от времени, из периферических тканей. Спустя несколько часов после каждого приёма пищи, из мышц в печень поступает аланин. В печени он подвергается дизаминированию, а образующийся пируват, в результате глюконеогинеза, превращается в глюкозу крови. Глюкоза возвращается в скелет мышц для восполнения в них запасом гликогена. Одна из функций циклического обмена состоит в том, что он смягчён колебанием уровня глюкозы в крови в периодах между приёмами пищи. Возникший в мышцах дефицит, в дальнейшем, после еды восполняется за счёт всасываемости аминокислот пищи.

-превращение в нуклеотиды и другие продукты.

Аминокислоты служат предшественниками в биосинтезе пуриновых и пиримидиновых оснований, нуклеотидов, а так же в синтезе некоторых специальных веществ, в частности порфиринов, гормонов и других азотсодержащихся соединений.

4. Врождённое нарушение аминокислотного обмена у человека. Пищевая аллергия.

Фенилкетонурия.В основе этого нарушения лежит мутация гена кодирующего фермен, который участвует в превращениях фенилаланина. У здорового человека под действием кислорода воздуха фенилаланин превращается в тирозин.

Фенилаланин + НАДН+ Отирозин + НАД + НО

При наследственном диффеците превращение идёт по другому пути с образованием фенилпирувата. Избыток фенилпирувата в крови у новорожденных нарушает нормальное развитие мозга и является причиной умственной отсталости. При достаточно раннем выявлении можно создать условия для нормального развития ребёнка путём исключения фенилаланин содержащих продуктов.

Реакция образования фенилпирувата:

NH2-CH-COOH

CH2 COOH СH2-CO-COOH NH2-CH-COOH

CH2 транс- CH2

амилаза

+ CH2 + CH2

CO COOH

α- кетоглутаровая фенил- глутаминовая

кислота пируват кислота

источник

1. Печень синтезирует заменимые аминокислоты из углеводов и ЖК.

2. Печень синтезирует тканевые и сывороточные белки: все альбумины, большинство (75-90%) α-глобулинов, 50% β-глобулинов (фибриноген, протромбин, проконвертин, проакцелерин) и немного γ-глобулинов (клетки Купфера).

В печени образуется много тканевых ферментов, которые имеют диагностическое значение: ЛДГ, АСТ, АЛТ, транскетолаза, глутаматдегидрогеназа, холинэстераза, щелочная фосфотаза.

Печень синтезирует ферменты плазмы крови: ЛХАТ, ЛПЛ, пептидный гормон ангиотензиноген.

Печень синтезирует специфические азотсодержащие соединения: холин, креатин.

3. Печень гидролизует тканевые и сывороточные белки, пептидные гормоны до АК.

4. Печень дезаминирует аминокислоты. Образующиеся кетокислоты идут в реакции глюконеогенеза, синтеза кетоновых тел.

5. Печень в орнитиновом цикле нейтрализует аммиак с образованием мочевины.

6. Печень осуществляет катаболизм нуклеотидов до пуриновых и пиримидиновых оснований. Пурины потом превращаются в мочевую кислоту, которая затем выделяется почками.

Приобретенные (гепатит, цирроз, опухоли и т.д.) и наследственные заболевания печени (фенилкетонурия, алкаптонурия, тирозинемии) могут вызывать нарушения обмена азотсодержащих соединений.

Для оценки участия печени в обмене азотсодержащих соединений в плазме крови определяют концентрацию свободных АК, общего белка, белковые фракции, протромбиновый индекс, соотношение мочевина/аммиак, проводят нагрузку метионином, диспротеинемические тесты.

Концентрация аммиака в плазме крови в норме 19-43мкмоль/л. Концентрация аммиака повышается при тяжелых паренхиматозных поражениях печени, при портоковальном шунтировании. Может привести к развитию печеночной комы.

Концентрация мочевины в плазме крови в норме 4,2-8,3ммоль/л. Снижение уровня мочевины наблюдается при гепатите, циррозе, острой дистрофии, токсическом поражении печени фосфором, мышьяком и др. ядами.

Концентрация свободных аминокислот в плазме крови в норме 48-68мг/л. Уровень свободных аминокислот (цистеин, метионин, тирозин и глутамат) (и уровень остаточного азота в крови) повышается при тяжелых поражениях печеночной паренхимы, особенно при массивном ее распаде. Фенилаланин и его кетопроизводные повышены в крови при фенилкетонурии. Гомогентизиновая кислота накапливается в организме при алкаптонурии. Повышение тирозина в крови наблюдается при тирозинемиях.

Концентрация общего белка в плазме крови в норме 70-90г/л. Снижение общего белка происходит при циррозе, гепатите, раке печени, токсическом поражении печени.

Концентрация альбуминов в плазме крови в норме 56,5-66,5% от общего количества белка.

Снижение альбуминов происходит при хронических заболеваниях печени: гепатите, циррозе, опухолях печени.

Концентрация α-глобулинов в плазме крови в норме 7,6-14,2% от общего количества белка. Увеличение α-глобулинов в сыворотке крови характерно для острых воспалительных процессов, т.к. в данную фракцию входят белки острой фазы (с-реактивный белок, α1-антитрипсин, α2-макроглобулин и др.). Содержание α-глобулинов может увеличиваться также при обострениях хронических заболеваний.

Концентрация γ-глобулинов в плазме крови в норме 12,8-19,0% от общего количества белка. Содержание γ-глобулинов увеличено при хронических патологических состояниях, связанных с интенсификацией иммунных процессов, т.к. эта фракция состоит главным образом из иммуноглобулинов.

Альбумино-глобулиновый индекс в норме равен 1,5-2,0. Альбумино-глобулиновый индекс снижается при циррозе печени и нефротическом синдроме.

Протромбиновый индекс — отношение стандартного протромбинового времени к протромбиновому времени у обследуемого пациента, выраженное в процентах. В норме он 80-110%. Так как печень синтезирует белки свертывания крови, протромбиновый индекс снижается при развитии печеночной недостаточности.

В организм вводят метионин натощак перорально (50мг/кг). Определяют концентрацию метионина и цистеина в крови и моче натощак, и после нагрузки через каждые 2 часа в течение 12 часов. В норме максимум повышения через 2 часа, нормализация через 6. При печеночной недостаточности максимум превышает норму в 8-10 раз, время циркуляции 10-12 часов.

Диспротеинемические тесты (тимоловая проба, сулемовая проба, проба Вельтмана)

Тимоловая проба (ТП) — осадочная проба, которая фиксирует дис- и парапротеинемию по изменению соотношения альбуминов и β, γ- глобулинов, липопротеидов, фосфолипидов и по появлению в сыворотке крови высокомолекулярных аномальных белков.

Принцип метода: При взаимодействии сыворотки крови с тимоло-вероналовым буфером появляется помутнение вследствие образования глобулин-холестерин-липопротеид-тимол-фосфолипидного комплекса. Его интенсивность связана с количеством и % соотношением отдельных фракций.

Проба не специфична, дает положительный (+) ответ при острых и хронических воспалительных процессах протекающих в различных органах и тканях (печень, почки, легкие, соединительная ткань и т.д.).

ТП (+) — при острых вирусных и хронических токсических гепатитах, деком-пенсированном циррозе, раке и его метастазах в печень, при печеночной желтухе.

Читайте также:  Как влияет вирус эпштейн барра на печень

ТП (-) при надпеченочной и подпеченочной желтухе (без цитолиза).

источник

11.Источниками большей части протеинов системы комплемента являются не только макрофаги, моноциты, но и гепатоциты.

12.В печени активно протекает метаболизм аминокислот (схема 5). Основная масса поступающих или образовавшихся с помощью транс-аминирования и других реакций (в которых участвует тетрагидрофолиевая кислота — ТГФК) аминокислот затрачивается на синтез различных специфических и неспецифических белков (см. выше).

Другая часть идет на синтез самых разных низкомолекулярных соединений. Так, гликогенные аминокислоты могут служить источниками не только глюкозо-6-фосфата (см. выше), но и глицеральдегид-3-фосфата, судьба которого имеет несколько направлений, в том числе может закончиться образованием глицерол-1-фосфата (см. выше). Из кетогенных аминокислот, как отмечено выше, синтезируются кетоновые тела.

Но в гепатоцитах отдельные аминокислоты подвергаются специфическим преобразованиям:

А) из серосодержащих аминокислот образуется таурин, который позднее включается в парные жёлчные кислоты (таурохолевая, тауродезоксихолевая), а также может служить антиоксидантом, связывая гипохлорит анион, стабилизировать мембраны клеток;

Б) в гепатоцитах происходит активация метионина, который в виде S-аденозилметионина служит источником метильных групп в следующих реакциях:

а) окончание генеза креатина:

гуанидинацетат + SAМ креатин + S-аденозилгомоцистеин;

б) синтез холина для холинфосфатидов (липотропных веществ):

этаноламин + SAМ холин + S-аденозилгомоцистеин.

13.По наличию гема (субстраты для его синтеза — сукцинил КоА и аминокислота глицин) печень занимает 2 место за эритроцитами, так как это соединение является облигатным компонентом цитохрома Р450 (гидроксилирующего ксенобиотики, см. ниже).

14.В печени завершается катаболизм многих азотсодержащих соединений. Все они служат источником аммиака (из –NH2), который при растворении дает сильную щёлочь – гидроксид аммония. Поэтому во всех клетках организма, где он образуется, в ответ начинают работать различные буферные системы, альфа-кетокислоты, которые его нейтрализуют. Но этот промежуточный процесс должен закончиться в печени инактивацией полученных соединений. Подобное химическое явление получило название орнитинового цикла синтеза мочевины (или цикла Кребса I по имени исследователя, описавшего его ключевые звенья) (схема 5).

15.Ароматические азотсодержащие соединения, в первую очередь пуриновые основания, являясь конденсированными гетероциклами, не способны подвергаться распаду. Поэтому после неоднократных гидроксилирований преобразуются в мочевую кислоту (точнее в её соли – ураты). Этот процесс, как и предыдущий, описан только в гепатоцитах.

16.Как известно, разрушение старых и больных эритроцитов осуществляется клетками РЭС, в том числе печени. При этом деградация гема завершается образованием билирубина – потенциально токсического соединения. Где бы ни синтезировался, он должен быть доставлен в гепатоциты для окончательной инактивации. Ключевую роль в этой ситуации играет фермент УДФ-глюкуронилтрансфераза (УДФГ-трансфераза), с помощью которой и получаются относительно растворимые билирубинмоно- и билирубиндиглюкурониды (связанный билирубин), выделяющиеся из организма в составе жёлчи.

При подавляющем большинстве заболеваний внутренних органов, сопровождающихся сдвигами в белковом обмене, обнаруживается гипопротеинемия, носящая обычно вторичный, приобретённыйхарактер. Абсолютную гипопротеинемию, возникающую, как правило, из-за снижения величин альбуминов, обусловливают многочисленные причины (недостаточное поступление белков с пищей, их повышенный распад в организме, потеря с кровью и мочой, перемещение в другие ткани при формировании экссудатов и отёков, генетически детерминированные нарушения в генезе ферментов), а также подавление протеосинтетической функции печени. Последнее наблюдается при паренхиматозных гепатитах и циррозах.

Более половины всего количества белков плазмы (35-55 г/л) приходится на долю альбуминов, которые обновляются достаточно быстро: в течение суток образуется и разрушается 10-16 г подобных соединений. Благодаря значительной концентрации, высокой гидрофильности и небольшим размерам молекул они выполняют важную функцию по поддержанию коллоидоосмотического давления плазмы, тем самым участвуя в обмене воды между кровью и межтканевым пространством.

При содержании указанной фракции протеинов в плазме крови ниже 30 г/л онкотическое давление уменьшается настолько, что вода переходит из внутри- во внесосудистый сектор, что может обусловить возникновение отёков. Определение уровня альбуминов в сыворотке крови играет существенную роль для оценки тяжести течения заболеваний, сопровождающихся гипоальбуминемией, одной из причин которойявляется распад гепатоцитов.

Вторичная гипоальбуминемия наблюдается при альтерациях печени, портальном циррозе, длительной механической желтухе. Снижение цифр данных белков крови при хронических поражениях органа (тяжёлом длительном вирусном гепатите, циррозах печени) имеет прогностическое значение и служит неблагоприятным признаком. При острых повреждениях гепатоцитов определение содержания альбуминов в биологических жидкостях особого значения не имеет.

Для диагностики заболеваний внутренних органов большую значимость приобретает комплексная оценка количественных вариаций всех выявляемых белковых фракций. Принято выделять несколько, нередко разных по патофизиологической природе типов изменений в их спектре, отражающих как дис-, так и парапротеинемии. Отдельные типы электрофореграмм включают следующие сдвиги в профиле сывороточных протеинов (табл. 2):

Таблица 2. Типы протеинограмм, соответствующие определённым видам заболеваний внутренних органов

Тип протеинограммы, соответствующий Альбу-мины Глобулины
α1 α2 β γ
1. Острым воспалительным процессам
2. Хроническому воспалению
3. Нефротическому симптомокомплексу
4. Злокачественным новообразованиям
5. Гепатитам
6. Циррозам печени
7. Обтурационной желтухе

Примечание: — значительное увеличение; — умеренное увеличение;

— уровень не меняется;

— значительное снижение; — умеренное снижение;

1-й тип протеинограмм характеризуется резким снижением величин альбуминов и возрастанием уровня α-1- и α-2-глобулинов. Такая диспротеинемия обусловлена усиленным синтезом белков острой фазы (α-1- и α-2-глобулинов, составляющих группу гликопротеинов) и подавлением продукции альбуминов в гепатоцитах (вследствие интоксикации, отчасти компенсаторной). Чаще наблюдается при острых воспалительных процессах, а также при обширном свежем инфаркте миокарда, сепсисе, начальной стадии пневмонии, туберкулёзе лёгких, остром полиартрите.

2-й тип протеинограмм отличается умеренным падением доли альбуминов и значительным увеличением концентрации α-2- (нередко α-1-) и γ-глобулинов. Последние усиленно синтезируются системой мононуклеарных фагоцитов. Цифры общего белка и β-глобулинов в крови сохраняются в пределах нормы. Специфический признак – снижение коэффициента альбумины/(α-2- + γ-глобулины) менее 2,2. Встречается при синдроме хронического воспаления (холецистит, поздняя стадия пневмонии, хронические формы туберкулёза лёгких).

В 3-м типе протеинограмм регистрируется значительное уменьшение величин альбуминов, повышение значений α-2- и β-глобулинов при умеренном падении уровня γ-глобулинов. Данный тип изменений свойственен синдрому нарушения функции почечного фильтра.

У 4-го типа протеинограмм выявляется вилка, подобная 3-му типу, только фиксируется подъём количества всех глобулиновых фракций (вследствие их гиперпродукции в ответ на угнетение синтеза альбуминов, обусловленное синдромом интоксикации). Именуется типом злокачественных новообразований.

5-й тип протеинограмм связан с умеренным уменьшением концентрации альбуминов (из-за нарушения протеосинтетической функции гепатоцитов), ростом долей γ-глобулинов (в силу «раздражения» системы мононуклеарных фагоцитов и усиления продукции IgG, IgA, IgM) и менее выраженным накоплением β-фракции. Наблюдается при гепатитах, последствиях токсического повреждения печени. Уровень общего белка крови сохраняется в пределах нормальных границ.

6-й тип протеинограмм отличает глубокая гипоальбуминемия с параллельным падением в классе α-2-глобулинов (из-за глубоких дистрофических повреждений гепатоцитов) при сильном увеличении (отчасти компенсаторном) цифр γ-глобулинов (за счёт IgA, IgG). Обнаруживается при циррозе печени.

7-й тип протеинограмм включает уменьшение содержания альбуминов с небольшим повышением величин α-2-, β- и γ-глобулинов. Встречается при обтурационной желтухе, вызванной наличием камней в общем жёлчном протоке, закупоркой его раковой опухолью, злокачественным новообразованием в головке pancreas (что создаёт механическое препятствие оттоку жёлчи).

2.4. РОЛЬ ПЕЧЕНИ В СУДЬБЕ ВИТАМИНОВ

1.Печень секретирует жёлчь, компоненты которой – соли жёлчных кислот — ответственны за всасывание липовитаминов (А, Д, Е, К, F).

2.Все жирорастворимые и многие из гидровитаминов (В12, фолиевая кислота, В1, В6, РР и др.) способны депонироваться в печени.

3.Особая роль этого органа заключается в том, что в нём происходит активация витаминов:

а) фолиевая кислота с помощью витамина С восстанавливается в тетрагидрофолиевую кислоту (ТГФК);

б) витамины В1 и В6 фосфорилируются в тиаминдифосфат и пиридоксальфосфат соответственно;

в) часть каротинов преобразуется в витамин А под влиянием каротиндиоксигеназы;

г) витамин Д подвергается первому гидроксилированию на пути получения гормона кальцитриола;

д) окислившийся витамин С восстанавливается в аскорбиновую кислоту;

е) витамины РР, В2, пантотеновая кислота включаются в соответствующие нуклеотиды (НАД + , НАД + Ф, ФМН, ФАД, КоА-SH);

ж) витамин К окисляется, чтобы в виде своего пероксида служить коферментом в созревании (посттрансляционной модификации) белковых факторов свёртывания крови.

4.В печени синтезируются белки, выполняющие транспортные функции по отношению к витаминам. Например, ретинолсвязывающий белок (его содержание уменьшается при опухолях), витамин Е-связывающий белок и т.д.

5.Часть витаминов, в первую очередь жирорастворимых, а также продуктов их преобразований выделяется из организма в составе жёлчи.

2.5. ФУНКЦИИ ПЕЧЕНИ В МИНЕРАЛЬНОМ ОБМЕНЕ

1.Печень служит депо различных макро- (К, Na, Ca, Mg, Fe) и микро-(Cu, Mn, Zn, Cо, As, Cd, Pb, Se) элементов.

2.Для накопления железа гепатоциты синтезируют специальный белок – ферритин. В ретикулоэндотелиоцитах печени и селезенки регистрируется водонерастворимый железосодержащий протеиновый комплекс гемосидерин.

3.В гепатоцитах синтезируется церулоплазмин, который, кроме выше-названных функций, выполняет роль транспортного белка для ионов меди.

4.Трансферрин, обладающий как и церулоплазмин, полифункциональ-ностью, также образуется в печени и используется для переноса в плазме крови только ионов железа. Данный белок необходим для эмбрионального клеточного роста в период формирования печени.

5.В печени ион Zn включается в алкогольдегидрогеназу, необходимую для биотрансформации этанола (см. схему 2).

6.Поступившие в гепатоциты соединения селена преобразуются в Se-содержащие аминокислоты и с помощью специфической т-РНК включаются в различные Se-протеины: глутатионпероксидазу (ГПО), I-йодтиронин-5’дейодиназу, Se-протеин Р. Последний считают основным транспортёром этого микроэлемента. Дейодиназа, обнаруженная не только в печени, обеспечивает конверсию прогормона тироксина в активную форму – трийодтиронин. Что же касается ГПО, активность этого фермента регистрируется практически во всех тканях, но особенно она велика в гепатоцитах. Как известно, глутатионпероксидаза – ключевой фермент антирадикальной защиты.

7.В печени сера, включённая в аминокислоты, окисляется до сульфатов, которые в виде ФАФС (фосфоаденозилфосфосульфатов) используются в реакциях сульфирования ГАГов, липидов, а также в процессах биотрансформации ксенобиотиков и некоторых эндогенных веществ (примеры продуктов инактивации – скатоксилсульфат, индоксилсульфат).

Читайте также:  Что нельзя есть при заболевании печени список

8.Печень способна служить временным депо воды, особенно при отёках (количество Н2О может составлять до 80 % от массы органа).

2.6. ЗНАЧЕНИЕ ПЕЧЕНИ В РЕГУЛЯЦИИ

1.В гепатоцитах синтезируются белки, транспортирующие гормоны в крови (секс-стероидсвязывающий белок, транскортин, тироксин-связывающий глобулин и др.).

2.Печень – один из немногих органов, где тироксин дейодируется в трийодтиронин (см. выше).

3.Важный гормон, регулирующий обмен Са – кальцитриол начинает синтезироваться из витамина Д в печени (см. выше).

4.ИФР-1 (инсулиноподобный фактор роста), секретируемый клетками печени, регулирует высвобождение гормона роста, подавляя выделение соматолиберина из клеток гипоталамуса и стимулируя работу соматостатина.

5.Под влиянием аминооксидаз в печени происходит окисление катехоламинов.

6.Женские половые гормоны (эстрадиол, эстрон) преобразуются в эстриол.

7.Стероидные гормоны инактивируются, подвергаясь микросомальному окислению, превращаясь затем в глюкурониды или сульфаты (см. ниже).

8.В печени регистрируются специфические гидролазы (вазопрессиназа, инсулиназа), расщепляющие соответствующие гормоны.

При различных недугах печени могут возникать сдвиги с таковыми при синдроме эутироидной патологии (нормальные величины общего и свободного Т4 в сочетании с низким уровнем общего и свободного Т3).

Наиболее характерным для больных циррозом печени является уменьшение концентраций общего и свободного трийодтиронина вследствие подавления активности дейодиназы, локализующейся в гепатоците.

Низкие цифры Т3 (общего и свободного) характеризуют гипотироидный статус, который может служить адаптационной реакцией организма в целях угнетения скорости метаболизма в клетках печени и предохранения функций органа, а также для сохранения общих запасов белков. В последние годы показано, что у пациентов с ЦП развитие гипотироза приводит к улучшению биохимических показателей печени, уменьшению степени декомпенсации.

У больных с острым гепатитом лёгкой или средней тяжести отмечается на фоне нормального уровня свободного тироксина повышение количества общего Т4 вследствие роста содержания тироид-связывающего глобулина, который синтезируется в этот период в числе белков острой фазы. При угрозе развития печёночной недостаточности соотношение свободных Т3 и Т4 отрицательно коррелирует с тяжестью недуга и может иметь прогностическое значение.

При хроническом гепатите без сопутствующих аутоиммунных повреждений величины общего Т4, общего Т3 и тироксин-связывающего глобулина часто повышены, а значения тиротропного гормона и свободного Т4 находятся в пределах нормы.

Принятое в последнее время лечение вирусных гепатитов α-интерфероном создало дополнительный риск возникновения аномалий функций щитовидной железы с индукцией аутоиммунных реакций, образованием антитироидных антител, антител к рецепторам ТТГ.

2.7. БИОТРАНСФОРМАЦИОННАЯ ФУНКЦИЯ ПЕЧЕНИ

Исторически сложилось, что процесс преобразований поступающих в печень ксенобиотиков (лекарств, ядов, продуктов гниения в кишечнике) и метаболитов, доставленных из клеток организма (гормонов, витаминов, билирубина, глутамина, других аминокислот, солей аммония и т.д.) называли термином «обезвреживающая функция». Если же подойти внимательно к этому словосочетанию, то естественно возникает вопрос: разве правильно считать инактивацию гормонов, витаминов и других жизненно важных соединений обезвреживанием? В настоящее время у гепатологов входит в лексику следующий термин: «биотрансформационная функция».

Процесс инактивации для разных веществ различен, определяется особенностями их строения. Например, чтобы обезвредить аммиак, из него синтезируется мочевина, витамин РР метилируется, сульфаниламиды ацетилируются, нитробензол восстанавливается в парааминофенол, этанол окисляется, сердечные гликозиды гидролизуются и т.д.

Для большинства биологически активных соединений, способных преодолеть клеточную мембрану, характерна амфипатичность. Следовательно, чтобы предотвратить их поступление в цитоплазму, необходимо увеличить гидрофильность. Для этих целей в печени в солидных концентрациях локализуются УДФГК, ФАФС, ацетил-КоА, глутамин, глицин, цистеин и некоторые другие аминокислоты, которые вступают во взаимодействие с инативируемыми веществами с образованием так называемых парных соединений, а сам процесс обозначается термином конъюгирование.

Классическим примером подобного обезвреживания могут служить образование растворимого (тем самым нетоксичного) билирубинглюкуронида, получение фенилацетилглутамина (продукта инактивации фенилпирувата – метаболита фенилаланина, накопление которого в необычных количествах провоцирует олигофрению фенилпирувику /фенилкетонурию/). Подобным образом обезвреживаются продукты гниения белков в кишечнике (индол → индоксилсерная кислота, скатол→ скатоксилсерная кислота и т.д.).

Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени по тому же принципу из бензойной кислоты и глицина (на этом основана давняя проба Квика-Пытеля, с помощью которой выясняется антитоксическая функция печени).

Основные преобразования осуществляются в микросомах печени. Стероидные гормоны, подвергаясь микросомальному окислению, инактивируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз преобразуются катехоламины. Ароматические углеводороды окисляются до карбоновых кислот.

Наряду с микросомальным (ключевой акцептор электронов цитохром Р450, а также монооксигеназы, цитохром-с-редуктазы, восстановленный НАДФ), в печени существует также пероксисомальное окисление. Пероксисомы – микротельца, служащие специализированными окислительными органеллами. Они содержат оксидазу мочевой кислоты, лактатоксидазу, оксидазу Д-аминокислот, а также каталазу. Последняя катализирует расщепление пероксида водорода, который образуется при действии вышеназванных оксидаз.

Однако не всегда подобные химические трансформации напрямую обусловливают снижение биологической активности. Иногда развивается прямо противоположный эффект. Хлороформ в печени преобразуется в фосген, этанол в ацетальдегид, тетраэтилсвинец в триэтилсвинец – все образовавшиеся продукты более токсичны, чем их предшественники.

Над использованием уникальных биотрансформационных свойств печени бьются исследователи, пытаясь создать лекарства, которые, проходя по желудочно-кишечному тракту, относятся индифферентно к живущей в нём микрофлоре. Но, попадая в печень и преобразуясь там, они обретают бактериостатическую активность. Цель благородна, но труднодостижима, так как не всегда чётко можно прогнозировать варианты химической трансформации.

Интересно, что всех людей можно разделить на лиц с медленно и быстро работающей печенью. Печень-«флегматик» часто становится жировым депо. Соединения в ней распадаются медленно, не торопясь утилизируются, жир же накапливается. Этот процесс усугубляется у алкоголиков, у больных сахарным диабетом, ожирением. Тем, у кого замедлена биотрансформация, не показана работа на химических предприятиях, в химических лабораториях и т.д.

3. ЛАБОРАТОРНАЯ ДИАГНОСТИКА ЗАБОЛЕВАНИЙ ПЕЧЕНИ

Острая и хроническая патология печени многообразна. Проблема хронических поражений органа является одной из основных и сложных в гастроэнтерологии. Хронические гепатиты включают широкий спектр нозологически самостоятельных диффузных воспалительных заболеваний печени различной этиологии. Их основными этиологическими факторами признаны инфицирование гепатотропными вирусами, действие ксенобиотиков и, в первую очередь, алкоголя и лекарств. В ряде случаев не удаётся установить причину поражения, например, при аутоиммунном гепатите. Кроме того, некоторые недуги органа на определённом этапе их развития имеют ряд общих клинических и морфологических признаков, свойственных гепатитам, что требует проведения дифференциальной диагностики между ними. К

Таблица 3. Основные патогенетические механизмы развития острых и хронических заболеваний печени

Заболевания Ведущий патогенетический механизм
1.Вирусные гепатиты (ВГ) Острый и хро-нический вирус-ный гепатит В Цитолиз гепатоцитов связан с активностью Т-киллеров (при наличии НВсоrAg и НВеАg)
Острый и хро-нический вирус-ный гепатит С Прямой цитотоксический эффект вируса, иммунный цитолиз
Острый и хро-нический вирус-ный гепатит Д Прямой цитотоксический эффект вируса, иммунный цитолиз
2.Аутоиммун- ный гепатит (АГ) Первичный билиарный цирроз печени (ПБЦ) Аутоантитело-зависимая цитотоксич-ность – иммунно-опосредованные некрозы гепатоцитов при АГ или холангиоцитов при ПБЦ
3.Лекарствен-ные и алко-гольные поражения печени Жировая дистрофия печени без некрозов Острый гепатит, стеатогепатит Блокада ферментов, участвующих в синтезе липопротеинов, фосфо-липидов и др. (дефицит липотропных факторов) Усиление перекисного окисления липидов (ПОЛ) мембран гепатоцитов с накоплением Н2О2 и свободных ионов кислорода Блокада энзимов, участвующих в биотрансформационной функции печени (цитохрома Р450 и др. микросомальных ферментов)
4.Болезнь Вильсона–Коновалова, гемохроматоз Усиление ПОЛ Активация фиброгенеза
5.Циррозы печени Соответствует этиологическому фак-тору Активация фиброгенеза Аутоантитело-зависимая цитотоксич-ность Дефицит ферментов микросомального окисления

последним относятся первичный билиарный цирроз печени, склерозирующий холангит, болезнь Вильсона-Коновалова, гемохроматоз, α1-антитрипсиновая недостаточность, ряд наследственных заболеваний, включая тезаурисмозы (болезни накопления), патология органа при беременности, системных и инфекционных поражениях. Основные звенья патогенеза вышеперечисленных страданий указаны в таблице 3.

Клиническая лабораторная диагностика имеет ведущее значение в гепатологии. Биохимические тесты не являются строго специфичными, но по их результатам можно сделать заключение о функциональном состоянии органа, подтвердить повреждение печени, а также судить об активности и тяжести процесса.

В комплексе биохимических исследований остаётся важным изучение ферментного статуса, пигментного обмена, белкового состава сыворотки, осадочных проб и выделительной функции печени.

Доминирующее значение в лабораторной диагностике заболеваний гепатобилиарной системы имеет определение активности энзимов, генез которых осуществляется гепатоцитами и клетками эпителия жёлчных протоков. В клинической практике их условно подразделяют на секреторные, экскреторные и индикаторные.

Секреторные — синтезируются гепатоцитами и у здоровых людей выделяются в плазму, выполняя в ней определённые функции. К ним относят холинэстеразу (ХЭ), церулоплазмин, про- и частично антикоагулянты.

Экскреторные — образуются в печени и частично в других тканях, в том числе, в жёлчных выводных протоках, и в обычных условиях выделяются с жёлчью (щелочная фосфатаза (ЩФ), γ-глутамилтранспептидаза, лейцинаминопептидаза, 5′-нуклеотидаза, β-глюкуронидаза).

Последние достижения клинической энзимологии позволяют условно разделить эти БАВ по локализации на следующие группы:

1) универсально-распространенные ферменты, активность которых обнаруживается не только в печени, но и в других органах – аминотрансферазы, фруктозодифосфатальдолаза (ФДФА);

2) печёночно-специфические (органоспецифические) – энзимы, активность которых исключительно или в максимальной степени регистрируется в печени. К ним относятся уроканиназа, орнитинкарбамоилтрансфераза, аргиназа, фруктозо-1-фосфатальдолаза, сорбитолдегидрогеназа и другие;

3) клеточно-специфические биокатализаторы – преимущественно локализуются в гепатоцитах, в купферовских клетках или холангиоцитах (5′-нуклеотидаза, щелочная фосфатаза, γ-глутамилтранспептидаза);

4) органеллоспецифические – являются маркёрами определённых компартментов гепатоцита: цитоплазматические, митохондриальные, митохондриально-цитоплазматические, лизосомальные (кислая фосфатаза, рибонуклеаза, дезоксирибонуклеаза), микросомальные (глюкозо-6-фосфатаза) (табл.1). Этим ферментам присущи внутриклеточные каталитические эффекты, и они являются наиболее диагностически важными. В физиологических условиях активность некоторых из них (ЛДГ, альдолазы, АлАТ, АсАТ) в плазме крови низкая, а при глубоких повреждениях печени — возрастает.

Таблица 4. Энзимы печени и их компартментализация

Особенности ферментов Название
I. Секреторные энзимы: ХЭ, церулоплазмин, про- и частично антикоагулянты
II. Экскреторные: ЩФ, ЛАП, ГГТП, 5′-нуклеотидаза, β-глюкуронидаза
1) универсально-распространённые Аминотрансферазы, ФДФА
2) печёночно-специфические (органоспецифические) Уроканиназа, орнитинкарбамоилтрансфераза, аргиназа, Ф-1-ФА, сорбитолДГ
3) клеточно-специфические ЩФ, ГГТП, 5′-нуклеотидаза
4) органелло-специфические: АлАТ, АсАТ, ЛДГ, альдолаза, кислая фосфатаза, рибонуклеаза, дезоксирибонуклеаза, глюкозо-6-фосфатаза
а) цитоплазматические АлАТ, ГГТП, ЛДГ, сорбитолДГ, альдолаза, ЛАП
б) митохондриальные ГлДГ, карбамоил-фосфатсинтетаза, АсАт
в) митохондриально-цитоплазматические АсАТ
Читайте также:  Какие анализы сдавать при увеличенной печени и селезенке

Очевидно, что спектр плазменных энзимов в нормальных условиях зависит от их клеточного набора в гепатоците и способности проникновения через клеточную и органоидные мембраны. В зависимости от расположения в клетке их условно можно разделить на цитоплазматические, митохондриальные и митохондриально-цитоплазматические. В таблицах 1, 4 перечислены энзимы и их компартментализация.

Вышеуказанная классификация имеет ряд недостатков, так как некоторые печёночно-специфические энзимы не являются абсолютно характерными для печени. С другой стороны, сывороточная ферментограмма значительно расширяет и детализирует оценку функциональных повреждений гепатоцитов.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Печень — основное место обмена аминокислот. Для синтеза белков используются аминокислоты, образующиеся при метаболизме эндогенных (в первую очередь мышечных) и пищевых белков, а также синтезируемые в самой печени. Большинство аминокислот, поступающих в печень по воротной вене, метаболизируются до мочевины (за исключением разветвленных аминокислот — лейцина , изолейцина и валина ). Некоторые аминокислоты (например, аланин ) в свободном виде поступают обратно в кровь. Наконец, аминокислоты используются для синтеза внутриклеточных белков гепатоцитов, сывороточных белков и таких веществ, как глутатион , глутамин , таурин , карнозин и креатинин . Нарушение метаболизма аминокислот может привести к изменению их сывороточных концентраций. При этом уровень ароматических аминокислот и метионина , метаболизирующихся в печени, повышается, а разветвленных аминокислот, используемых скелетными мышцами , — остается нормальным или понижается.

Предполагают, что нарушение соотношения этих аминокислот играет роль в патогенезе печеночной энцефалопатии , однако это не доказано.

Аминокислоты разрушаются в печени при помощи реакций трансаминирования и окислительного дезаминирования. При окислительном дезаминировании из аминокислот образуются кетокислоты и аммиак . Эти реакции катализируются оксидазой L-аминокислот . Однако у человека активность этого фермента низка, и поэтому основной путь распада аминокислот следующий: сначала происходит трансаминирование — перенос аминогруппы с аминокислоты на альфа-кетоглутаровую кислоту с образованием соответствующей альфа-кетокислоты и глутаминовой кислоты , — а затем уже окислительное дезаминирование глутаминовой кислоты . Трансаминирование катализируется аминотрансферазами (трансаминазами) . Эти ферменты в большом количестве содержатся в печени; они также обнаруживаются в почках, мышцах, сердце, легких и ЦНС. Наиболее изучена АсАТ . Ее сывороточная активность повышается при различных болезнях печени (например, при острых вирусном и лекарственном гепатитах ). Окислительное дезаминирование глутаминовой кислоты катализируется глутаматдегидрогеназой . Образующиеся в результате трансаминирования альфа-кетокислоты могут вступать в цикл Кребса , участвовать в метаболизме углеводов и липидов. Кроме того, с помощью трансаминирования в печени синтезируются многие аминокислоты, за исключением незаменимых аминокислот .

Распад некоторых аминокислот идет по иному пути: так, глицин дезаминируется с помощью глициноксидазы . При тяжелом поражении печени (например, обширном некрозе печени ) метаболизм аминокислот нарушается, содержание их в крови в свободной форме повышается, и в результате может развиться гипераминоацидемическая аминоацидурия .

источник

Печень- это самый крупный наш орган, его масса составляет от 3 до 5% массы тела. Основную массу органа составляют клетки гепатоциты. Это название часто встречается, когда речь заходит о функциях и болезнях печени, поэтому запомним его. Гепатоциты специально приспособлены для синтеза, преобразования и хранения множества различных веществ, которые поступают из крови – и в большинстве случаев туда же возвращаются. Вся наша кровь протекает через печень; она наполняет многочисленные печеночные сосуды и специальные полости, а вокруг них сплошным тонким слоем расположились гепатоциты. Такая структура облегчает обмен веществ между печеночными клетками и кровью.

Печень – депо крови

В печени очень много крови, но не вся она «проточная». Довольно значительный ее объем находится в резерве. При большой потере крови сосуды печени сжимаются и выталкивают свои запасы в общее кровеносное русло, спасая человека от шока.

Печень выделяет желчь

Выделение желчи – одна из важнейших пищеварительных функций печени. Из печеночных клеток желчь поступает в желчные капилляры, которые объединяются в проток, впадающий в двенадцатиперстную кишку. Желчь вместе с пищеварительными ферментами разлагает жир на составляющие и облегчает его всасывание в кишечнике.

Печень синтезирует и разрушает жиры

Клетки печени синтезируют некоторые жирные кислоты и их производные, необходимые организму. Правда, есть среди этих соединений и те, которые многие считают вредными, – это липопротеиды низкой плотности (ЛПНП) и холестерин, избыток которых образует атеросклеротические бляшки в сосудах. Но не спешите ругать печень: мы не можем обойтись без этих веществ. Холестерин – непременный компонент мембран эритроцитов (красных кровяных телец), а доставляют его к месту образования эритроцитов именно ЛПНП. Если холестерина слишком много, эритроциты теряют эластичность и с трудом протискиваются сквозь тонкие капилляры. Люди думают, что у них проблемы с кровообращением, а у них печень не в порядке. Здоровая печень мешает образованию атеросклеротических бляшек, ее клетки извлекают из крови избыток ЛПНП, холестерина и других жиров и разрушают их.

Печень синтезирует белки плазмы крови.

Почти половина белка, который синтезирует за сутки наш организм, образуется в печени. Самые важные среди них – белки плазмы крови, прежде всего альбумин. На его долю приходится 50% всех белков, создаваемых печенью. В плазме крови должна быть определенная концентрация белков, и поддерживает ее именно альбумин. Кроме того, он связывает и переносит многие вещества: гормоны, жирные кислоты, микроэлементы. Помимо альбумина, гепатоциты синтезируют белки свертывания крови, препятствующие образованию тромбов, а также многие другие. Когда белки состарятся, их распад происходит в печени.

В печени образуется мочевина

Белки в нашем кишечнике расщепляются на аминокислоты. Часть из них находит применение в организме, а остальные нужно удалить, потому что запасать их организм не может. Распад ненужных аминокислот происходит в печени, при этом образуется токсичный аммиак. Но печень не позволяет организму отравиться и сразу преобразует аммиак в растворимую мочевину, которая затем выводится с мочой.

Печень делает из ненужных аминокислот нужные

Бывает, что в рационе человека не хватает каких-то аминокислот. Некоторые из них печень синтезирует, используя фрагменты других аминокислот. Однако некоторые аминокислоты печень делать не умеет, они называются незаменимыми и человек получает их только с пищей.

Печень превращает глюкозу в гликоген, а гликоген в глюкозу

В сыворотке крови должна быть постоянная концентрация глюкозы (иначе говоря – сахара). Она служит основным источником энергии для клеток головного мозга, мышечных клеток и эритроцитов. Самый надежный способ обеспечить постоянное снабжение клеток глюкозой – запасти ее после еды, а потом использовать по мере необходимости. Эта важнейшая задача возложена на печень. Глюкоза растворима в воде, и запасать ее неудобно. Поэтому печень вылавливает из крови избыток молекул глюкозы и превращает в нерастворимый полисахарид гликоген, который откладывается в виде гранул в клетках печени, а при необходимости снова превращается в глюкозу и поступает в кровь. Запаса гликогена в печени хватает на 12-18 часов.

Печень запасает витамины и микроэлементы

Печень запасает жирорастворимые витамины А, D, Е и К, а также водорастворимые витамины С, В12, никотиновую и фолиевую кислоты. А еще этот орган хранит минеральные вещества, нужные организму в очень малых количествах, такие как медь, цинк, кобальт и молибден.

Печень разрушает старые эритроциты

У человеческого плода эритроциты (красные кровяные тельца, которые переносят кислород), образуются в печени. Постепенно эту функцию берут на себя клетки костного мозга, а печень начинает играть прямо противоположную роль – не создает эритроциты, а разрушает их. Эритроциты живут около 120 дней, а затем стареют и подлежат удалению из организма. В печени есть специальные клетки, которые отлавливают и разрушают старые эритроциты. При этом освобождается гемоглобин, который вне эритроцитов организму не нужен. Гепатоциты разбирают гемоглобин на «запчасти»: аминокислоты, железо и зеленый пигмент. Железо печень хранит, пока оно не потребуется для образования новых эритроцитов в костном мозге, а зеленый пигмент превращает в желтый – билирубин. Билирубин поступает в кишечник вместе с желчью, которую окрашивает в желтый цвет. Если печень больна, билирубин накапливается в крови и окрашивает кожу – это желтуха.

Печень регулирует уровень некоторых гормонов и активных веществ

В этом органе переводится в неактивную форму или разрушается избыток гормонов. Их список довольно длинный, поэтому здесь мы упомянем только инсулин и глюкагон, которые участвуют в превращении глюкозы в гликоген, и половые гормоны тестостерон и эстрогены. При хронических болезнях печени метаболизм тестостерона и эстрогенов нарушен, и у пациента появляются сосудистые звездочки, выпадают волосы под мышками и на лобке, у мужчин атрофируются яички. Печень удаляет избыток таких активных веществ, как адреналин и брадикинин. Первый из них увеличивает частоту сердечных сокращений, уменьшает отток крови к внутренним органам, направляя ее к скелетным мышцам, стимулирует расщепление гликогена и повышение уровня глюкозы в крови, а второй регулирует водный и солевой баланс организма, сокращения гладкой мускулатуры и проницаемость капилляров, а также выполняет некоторые другие функции. Плохо бы нам пришлось при избытке брадикинина и адреналина.

Печень уничтожает микробов

В печени есть специальные клетки-макрофаги, которые располагаются вдоль кровеносных сосудов и вылавливают оттуда бактерии. Пойманные микроорганизмы эти клетки заглатывают и уничтожают.

Печень обезвреживает яды

Как мы уже поняли, печень – решительный противник всего лишнего в организме, и уж конечно она не потерпит в нем ядов и канцерогенных веществ. Обезвреживание ядов происходит в гепатоцитах. После сложных биохимических преобразований токсины превращаются в безвредные, растворимые в воде вещества, которые покидают наше тело с мочой или желчью. К сожалению, не все вещества удается обезвредить. Например, при распаде парацетамола образуется сильнодействующее вещество, которое может необратимо повредить печень. Если печень нездорова, или пациент принял слишком большую дозу парацетомола, последствия могут быть печальными, вплоть до гибели клеток печени.

По материалам zdorovie.info

Полезная информация, организации инвалидов, знакомства

источник