Меню Рубрики

Белок в печени за счет чего может быть

Без участия печени в метаболизме белка организм может обходиться не более нескольких дней, затем наступает летальный исход. К наиболее важным функциям печени в обмене белка относят следующие.

1. Дезаминирование аминокислот.
2. Образование мочевины и извлечение аммиака из жидких сред организма.
3. Образование белков плазмы крови.
4. Взаимное превращение различных аминокислот и синтез из аминокислот других соединений.

Предварительное дезаминирование аминокислот необходимо для их использования при получении энергии и преобразования в углеводы и жиры. В небольших количествах дезаминирование осуществляется и в других тканях организма, особенно в почках, но по значимости эти процессы несопоставимы с дезаминированием аминокислот в печени.

Образование мочевины в печени помогает извлечению аммиака из жидких сред организма. Большое количество аммиака образуется в процессе дезаминирования аминокислот, дополнительное его количество постоянно образуется бактериями в кишечнике и абсорбируется в кровь. В связи с этим если в печени мочевина не образуется, то концентрация аммиака в плазме крови начинает быстро нарастать, что приводит к печеночной коме и смерти. Даже в случае резкого снижения кровотока через печень, что иногда происходит вследствие формирования шунта между воротной и полой венами, содержание аммиака в крови резко повышается с созданием условий для токсикоза.

Все основные белки плазмы крови, за исключением некоторых гамма-глобулинов, образуются клетками печени. Их количество составляет приблизительно 90% всех белков плазмы. Остальные гамма-глобулины представляют собой антитела, образуемые главным образом плазматическими клетками лимфоидной ткани. Максимальная скорость образования белков печенью составляет 15-50 г/сут, поэтому если организм теряет около половины белков плазмы, их количество может быть восстановлено в течение 1-2 нед.

Следует учитывать, что истощение белков плазмы крови является причиной быстрого наступления митотических делений гепатоцитов и увеличения размеров печени. Этот эффект сочетается с выбросом белков плазмы крови печенью, который продолжается до тех пор, пока концентрация белков в крови не вернется к нормальным значениям. При хронических заболеваниях печени (в том числе и циррозе) уровень белков в крови, особенно альбуминов, может падать до очень низких значений, что является причиной появления генерализованных отеков и асцита.

К числу наиболее важных функций печени относится ее способность синтезировать некоторые аминокислоты наряду с химическими соединениями, в состав которых включены аминокислоты. Например, в печени синтезируются так называемые заменимые аминокислоты. В процессе такого синтеза принимают участие кетокислоты, имеющие сходную химическую структуру с аминокислотами (исключая кислород в кето-положении). Аминорадикалы проходят несколько стадий трансаминирования, перемещаясь от имеющихся в надичии аминокислот в кетокислоты на место кислорода в кето-положении.

источник

Белки печени подвергаются постоянному обновлению, причем для них характерна очень высокая скорость оборота со средним периодом полужизни всего лишь в несколько дней. Кроме того, именно в печени синтезируется большинство белков плазмы крови. [2]

Процесс обновления фосфора в фосфорсодержащих группировках белка печени происходит во много раз медленнее, чем в фосфолипидах. [3]

Как видно, нельзя сомневаться, что белки печени и других тканей обладают в условиях постоянства состава такой же скоростью кругооборота, устанавливаемой с помощью меченого фосфата, какая найдена с N16, Н3 и с радиоактивной серой — S33 ( гл. [4]

В период белкового голодания в первую очередь расходуются белки печени , а затем белки сыворотки крови. [5]

В период белкового голодания в первую очередь расходуются белки печени , а затем белки сыворотки крови. Но, принимая во внимание общий вес мускулатуры и кожи, можно считать, что около 2 / 3 потерь белка при общем голодании падает на их долю. [6]

За 100 % ( контроль) принято включение 3 5-метионина в белки печени нормальных крыс . [8]

С-гуанидоаргинина и L — ( 3 — 3H) глутаминовой кислоты как в белки печени , так и в белки мышц. При этом авторы считают, что изменения темпов синтеза и деградации белков связаны с изменением интенсивности реутилизации аминокислот в организме, а не с изменением скоростей превращения их по обычным путям обмена. Реутилизация аминокислот, по их мнению, может быть сведена до минимума при обеспечении потребности животных в них за счет пищи. [9]

Признаками фиброзирующей реакции служили повышение скорости включения вводившегося в кровь меченого пролина ( аминокислота, входящая в состав коллагена) в белки печени , а при электронной микроскопии — отложения коллагена в перисинусои-дальные пространства Диссе. [10]

В качестве критериев состояния печени были избраны: синтез печенью мочевины и факторов свертывания крови ( протромбина, проконвертина и фактора V), содержание в печени жира, способность печени окислять тирозин и связывать фенолы, включение в белки печени меченного по сере радиоактивного метии-нина, содержание в сыворотке крови белка и белковых фракций. [11]

Многочисленные наблюдения больных в клиниках также свидетельствуют, что при голодании и тяжелых инфекционных заболеваниях, когда наблюдается интенсивный распад органов, в первую очередь снижается масса печени и мышц и существенно не изменяется масса мозга и сердца. Организм за счет распада белков печени и мышц обеспечивает нормальную деятельность жизненно важных органов. [12]

Аминокислоты либо используются для синтеза белков печени и плазмы, либо превращаются в глюкозу и гликоген в процессе глюконеогенеза. Аммиак, образующийся при дезаминировании аминокислот, включается в состав мочевины в ходе цикла мочевины. Жирные кислоты превращаются в печени в триацилглице-ролы, холестерол и лшюпротеины плазмы; последние обеспечивают транспорт и накопление липидов в жировой ткани. Кроме того, жирные кислоты в печени могут подвергаться окислению, что приводит к запасанию энергии в виде АТР и к образованию кетоновых тел, доставляемых кровью в другие ткани. [13]

В пользу этой точки зрения свидетельствуют как опыты на животных, так и исследования, проведенные на людях. В опытах на белых мышах было показано, что часть мескалина включается в клеточный белок печени и что время этого превращения соответствует сроку, в который развиваются психические нарушения у человека. Георги, Фишер и Вебер, применяя несколько модифицированную ими пробу Квика ( дополнительная нагрузка гликолом), нашли, что мескалин у большинства исследованных ими здоровых людей ведет к падению содержания в моче гиппуровой кислоты, тем более значительному, чем выше доза мескалина и чем отчетливее вызываемые им психические нарушения. Янтц, ссылаясь на изменения капилляров, обнаруженные у собак и морских свинок после введения мескалина, полагает, что через поврежденные мескали-ном капилляры выходит белок, что нарушает функцию клеток, главным образом печени и ведет к поступлению в кровь токсических веществ — промежуточных продуктов белкового обмена, которые и являются непосредственной причиной психоза Все эти данные слишком разрозненны и немногочисленны и не позволяют утверждать, что именно нарушение дезин-токсикационной функции печени или образование в печени какого-то нового вещества является причиной мескалинового психоза. Даже если принять гипотезу об образовании нового метаболита, то остается открытым вопрос о том, что это за метаболит. Наличие метоксильных групп в молекуле мескалина, очевидно, играет роль в возникновении галлюцинаций, так как р-фенилэтиламин не является галлюциногеном, но и тримето-ксифеиилуксусная кислота, в которой все метоксильные группы сохранены, также не оказывает токсического действия. Увеличение содержания МОФА при блокировании альдегиддегидрогеназы с помощью-карбамида кальция значительно усиливало токсическое действие мескалина, — отчетливые изменения поведения наступали быстрее и вызывались дозами, не оказывавшими в обычных условиях влияния на поведение животных. В то же время ипрониазид, замедляя окисление самого мескалина, не усиливал его токсического действия; не вызывал нарушений поведения и другой, образующийся из МОФА метаболит — триметоксифенил-этанол. Приводим схему обмена мескалина и его избирательного нарушения по Фридгоффу и Голдстейну. [14]

источник

Среди строителей собственных мышц распространено мнение – “чем больше белка, тем лучше” и часто такие люди, не проводя подсчетов, употребляют максимально возможное количество белковых продуктов и добавок. Что говорят ученые о чрезмерном количестве белка в организме – может ли это навредить?

Для начала следует напомнить официальные рекомендации по потреблению белка. Например, в руководстве по спортивному питанию NSCA для набора сухой мышечной массы рекомендуется кроме умеренного избытка калорий (10-15% выше нормы) потреблять 1,3-2 г/ кг массы тела в день.

А при активном фазе снижения процента жира норму потребления белка ученые рекомендуют даже увеличить – до 1,8-2 граммов / кг массы тела в день. Причем, чем ниже процент жира (например, при подготовке к соревнованиям), тем выше требования к потреблению белка. Если цель — снижение процента жира до очень низких значений, рекомендуется увеличить потребление белка до 2,3-3,1 г белка на 1 кг массы тела в сутки.

Давайте теперь узнаем, что происходит с нашим телом при больших объемах потребления белка.

Не задавайтесь подобным вопросом, если у вас здоровые почки, и контролируйте потребление белка, если они больны. Самый разумный подход – постепенно наращивать потребление белка до более высокого уровня в рационе, а не «прыгать двумя ногами одновременно».

Как правило, при повышенном употреблении белка рекомендуется пить больше воды. Один из доводов – уменьшение риска появления камней в почках. Однако пока нет внятного научного обоснования, почему так следует делать, но возможно это разумный подход.

Наблюдения за ведущими активный образ жизни спортсменами-мужчинами и измерение уровня мочевины, креатинина и альбумина в моче показали, что в диапазоне приема белка от 1,28 до 2,8 г/кг веса тела (то есть на уровне рекомендаций, описанных выше) никаких существенных изменений не наблюдалось (1). Впрочем, этот эксперимент продолжался всего 7 дней.

Другое исследование (2) также не показало ассоциаций между количеством потребляемого белка и здоровьем почек (у женщин в постменопаузальный период).

Исследование с участием медсестер (3) подтверждает полученные результаты. Но при этом позволяет предположить, что данные о безвредности белка не относятся к случаям заболевания почечной недостаточностью и другим болезням почек, а также, что немолочные белки животного происхождения могут быть оказаться более опасными для организма, чем другие белки.

Существует предположение, что потребление белка приводит к функциональным изменениям в почках (4). Белок может влиять на работу почек (5,6), поэтому при его употреблении существует вероятность их повреждения. Наиболее выраженные результаты были получены в ходе экспериментов на мышах (белок составлял от 10-15% до 35-45% суточного рациона за раз) (7,8).

Также в ходе одного исследования (9) с участием здоровых людей было выявлено, что удвоение объема потребляемого белка (от 1,2 до 2,4 г/кг веса тела) приводит к превышению нормы показателей белкового метаболизма в крови. Была отмечена тенденция к адаптации организма – увеличению скорости клубочковой фильтрации, но этого было не достаточно, чтобы привести к норме показатели мочевой кислоты и мочевины крови в течение 7 дней (9).

Все эти исследования, прежде всего, говорят о том, что слишком много белка приводят к слишком быстрым изменениям, а процесс постепенного наращивания объемов не ухудшает почечную функцию (10). Это значит, что целесообразнее постепенно менять объем потребления белка на протяжении относительно длительного времени.

Людям с заболеваниями почек рекомендуется использовать диеты с ограниченным употреблением белка, так как это позволит замедлить неизбежное, казалось бы, ухудшение состояния (11,12). Отсутствие контроля за потреблением белка у пациентов с заболеваниями почек ускоряет (или, как минимум, не замедляет) процесс ухудшения их работы (3).

Нет никаких оснований считать, что нормальные объемы потребления белка, являющегося часть обычного рациона, могут быть вредными для печени здоровых крыс и людей. Однако, существуют данные предварительных исследований, согласно которым, очень большие количества белка после достаточно длительной голодовки (более 48 часов) могут привести к острой травме печени.

При лечении заболеваний печени (цирроз) рекомендуют уменьшать потребление белка, так как он является причиной накопления аммиака в крови (13,14), что вносит свой негативный вклад в развитие печеночной энцефалопатии (15).

Как минимум, на одной животной модели было показано, что повреждения печени развиваются при цикличном чередовании 5-дневных периодов достаточного потребления белка и периодов белкового дефицита (16). Сходный эффект наблюдался при потреблении пищи, содержащей 40-50% казеина, после 48-часового голодания (17). В ходе исследований на животных (18,19) были получены предварительные доказательства того, что повышенное потребление белка (35-50%) в момент возобновления кормления после 48-часового голодания может нанести вред печени. Более короткие периоды голодания не рассматривались.

Читайте также:  Как проявляются болезни печени и желчного пузыря

Напоминаем, что белки – это сложные органические соединения, состоящие из более мелких “кирпичиков” – аминокислот. Собственно, на аминокислоты расщепляются потребляемые в пищу белки.

Теоретически можно доказать вред аминокислот за счет их избыточной кислотности. Но клинической проблемой это не является: их кислотность слишком мала, чтобы причинить какие-либо неприятности.

Почитайте, как наше тело регулирует баланс кислотности / содержания щелочи в тексте “Вся правда об ощелачивании и закислении“.

Анализ крупного обзорного исследования не дает никакой связи между потреблением белка и риском переломов костей (показатель их здоровья). Исключением является ситуация, когда на фоне повышенной дозы белка в рационе общее потребление кальция падает ниже уровня 400 мг/1000 ккал ежедневно (хотя отношение рисков было довольно слабым и составило 1,51 при сравнении с самой высокой квартилью) (26). В других исследованиях сходной корреляции выявить не удалось, хотя логически этого следовало бы ожидать (27,28).

Соевый белок, похоже, сам по себе обладает дополнительным защитным эффектом для костной ткани у женщин в постменопаузе, что может быть связано с содержанием в сое изофлавонов (30).

Как ни смешно, но есть исследование на эту тему на крысах. Грызуны подвергались резкому воздействию значительных доз белка в рационе, в результате чего у них наблюдалось ухудшение работы почек.

Но «тренировки с отягощениями» (видимо, одну из групп крыс “нагружали” физически) уменьшали у некоторых из них негативный эффект и оказывали защитные действие (8).

1. Poortmans JR, Dellalieux O Do regular high protein diets have potential health risks on kidney function in athletes . Int J Sport Nutr Exerc Metab. (2000)
2. Beasley JM, et al Higher biomarker-calibrated protein intake is not associated with impaired renal function in postmenopausal women . J Nutr. (2011)
3. Knight EL, et al The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency . Ann Intern Med. (2003)
4. Brändle E, Sieberth HG, Hautmann RE Effect of chronic dietary protein intake on the renal function in healthy subjects . Eur J Clin Nutr. (1996)
5. King AJ, Levey AS Dietary protein and renal function . J Am Soc Nephrol. (1993)
6. Dietary protein intake and renal function
7. Wakefield AP, et al A diet with 35% of energy from protein leads to kidney damage in female Sprague-Dawley rats . Br J Nutr. (2011)
8. Aparicio VA, et al Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats . Br J Nutr. (2011)
9. Frank H, et al Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men . Am J Clin Nutr. (2009)
10. Wiegmann TB, et al Controlled changes in chronic dietary protein intake do not change glomerular filtration rate . Am J Kidney Dis. (1990)
11. Levey AS, et al Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study . Am J Kidney Dis. (1996)
12. [No authors listed Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study . J Am Soc Nephrol. (1996)
13. Merli M, Riggio O Dietary and nutritional indications in hepatic encephalopathy . Metab Brain Dis. (2009)
14. Starr SP, Raines D Cirrhosis: diagnosis, management, and prevention . Am Fam Physician. (2011)
15. Ong JP, et al Correlation between ammonia levels and the severity of hepatic encephalopathy . Am J Med. (2003)
16. Caballero VJ, et al Alternation between dietary protein depletion and normal feeding cause liver damage in mouse . J Physiol Biochem. (2011)
17. Oarada M, et al Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice . Br J Nutr. (2011)
18. Sogawa N, et al The changes of hepatic metallothionein synthesis and the hepatic damage induced by starvation in mice . Methods Find Exp Clin Pharmacol. (2003)
19. Hepatocellular Injuries Observed in Patients with an Eating Disorder Prior to Nutritional Treatment
20. Madhavan TV, Gopalan C The effect of dietary protein on carcinogenesis of aflatoxin . Arch Pathol. (1968)
21. Appleton BS, Campbell TC Effect of high and low dietary protein on the dosing and postdosing periods of aflatoxin B1-induced hepatic preneoplastic lesion development in the rat . Cancer Res. (1983)
22. Mandel HG, Judah DJ, Neal GE Effect of dietary protein level on aflatoxin B1 actions in the liver of weanling rats . Carcinogenesis. (1992)
23. Blanck A, et al Influence of different levels of dietary casein on initiation of male rat liver carcinogenesis with a single dose of aflatoxin B1 . Carcinogenesis. (1992)
24. Hornsby LB, Hester EK, Donaldson AR Potential interaction between warfarin and high dietary protein intake . Pharmacotherapy. (2008)
25. Bolter CP, Critz JB Plasma enzyme activities in rats with diet-induced alterations in liver enzyme activities . Experientia. (1974)
26. Dargent-Molina P, et al Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study . J Bone Miner Res. (2008)
27. Calvez J, et al Protein intake, calcium balance and health consequences . Eur J Clin Nutr. (2011)
28. High-Protein Weight Loss Diets and Purported Adverse Effects: Where is the Evidence?
29. Thorpe M, et al A positive association of lumbar spine bone mineral density with dietary protein is suppressed by a negative association with protein sulfur . J Nutr. (2008)
30. Zhang X, et al Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women . Arch Intern Med. (2005).

Смотрите также на Зожнике:

источник

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

С помощью анализов работы печени и почек можно эффективно контролировать вес. Часто человек даже не задумывается о том, что итогом ожирения бывают нарушения работы этих жизненно важных органов. Но это так.

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

Печень имеет ферменты, по уровню и состоянию которых можно определить, насколько хорошо она работает. Это следующие составляющие.

Если всех этих оставляющих слишком много, то работа печени может нарушаться. Что еще может спровоцировать нарушения работы печени?

  1. Злоупотребление алкоголем
  2. Частый прием лекарств, особенно психотропных препаратов
  3. Заболевания гепатитами разных видов
  4. Прием травяных чаев и настоев
  5. Инфаркт миокарда (хроническая и острая его форма)
  6. Другие хронические заболевания
  7. Отравления

Если человек долго сидит на диете и таким образом истощает свой организм, у него может быть повышенный уровень билирубинов печени, в результате чего печень начинает работать с перебоями.

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]

Главные белковые вещества печени – это глобулин и альбумин. Они вырабатываются самой печенью и переносятся по сему организму с кровью.

Эти белки помогают создаваться антителам, которые, как и некоторые другие вещества, являются связующими для иммунной системы.

Что касается альбумина, он помогает работе мышц и других органов: печени, почек, легких. Он помогает формироваться мышечным волокнам.

Если альбумина мало в организме, причинами его недостатка могут быть:

  • Диеты, изнуряющие организм
  • Заболевания пищеварительного тракта
  • Заболевания печени и почек
  • Хронические воспаления
  • Бедное белками, жирами и углеводами меню

Если анализы показали, что уровень альбумина катастрофически высок или низок, нужны дополнительные анализы для определения качества работы других ферментов, которые вырабатывает печень.

Эндокринологи рекомендуют обязательно провести анализы на уровень альбумина до того, как пациент займется нормализацией веса. Это надежный показатель работы печени.

Чтобы определить качество работы почек, важно провести анализ на уровень веществ, которые перерабатывают почки. Вот они.

  1. Мочевая кислота
  2. Креатинин
  3. Мочевина сыворотки крови

Эти вещества выводятся из организма с мочой, они – продукт распада белков в организме. Если этих веществ в моче обнаружено много, значит, почки работают недостаточно хорошо.

Если этого вещества в организме недостаточно, значит, у человека внутри скопилось много жидкости. Показатель такого состояния – отеки либо бедное меню с малым количеством белковой пищи и чрезмерной частью углеводов.

Если мочевины в организме мало, это может указывать на хронические заболевания или воспалительные процессы.

Значит, вам обязательно нужны дополнительные обследования работы почек.

Низкий уровень креатинина в крови наверняка укажет на заболевания почек и сбои в их работе. Если этот уровень ниже, чем 1,5 единиц, значит, у вас есть повод думать, что работа почек нарушена.

Если уровень креатинина выше или равно 29 единицам, значит, вы пьете мало жидкости и ваши почки страдают от этого. Кроме того, нужно сбалансировать меню. А именно – повысить содержание белков в рационе.

[24], [25], [26]

Если мочевой кислоты в организме много – у вас есть проблема со злоупотреблением алкоголя. Кроме того, в организме повышенный уровень триглицеридов, слишком много белка, но при этом очень мало жидкости.

Если мочевой кислоты много, это тоже повод обратиться к врачу. Это значит, что у человека может развиваться подагра, а также артрит. Оба эти заболевания могут приносить боль – в пальцах ног и рук, ступнях. Тогда нужно устранить алкоголь из меню, а также обратиться к гастроэнтерологу для баланса меню.

источник

Печень играет значительную роль в регуляции белкового обмена. В ней синтезируются белки плазмы: альбумин, а-глобулины и, по-видимому, в-глобулины, фибриноген, протромбин.

Одной из важнейших функций печени в отношении белкового обмена является образование мочевины (уреогенез) из аминокислот, доставляемых в печень из кишечника с кровью по воротной вене. Образование мочевины в печени заключается в дезаминировании аминокислот путем отщепления от них аммиака, из которого путем присоединения углекислоты образуется мочевина.

Альбумины поддерживают осмотическое давление, связывают и транспортируют гидрофильные вещества, в том числе билирубин и уробилин. Глобулины, вырабатывающиеся в основном в ретикулоэндотелиальной системе, подразделяются на отдельные подфракции: а1-, а2-, в- и у-глобулины. Глобулины аир являются носителями липидов крови и гликопротеидов; а-глобулины транспортируют растворимые в жирах витамины, гормоны и медь; в-глобулины транспортируют железо, фосфолипиды, витамины и гормоны; у-глобулины являются носителями антител. Фибриноген и протромбин участвуют в процессе свертывания крови.

1. Определение количества общего белка в сыворотке крови. Для определения общего белка в сыворотке крови предложены различные методы. Одним из наиболее часто применяемых методов является метод рефрактометрии. Для этого применяется аппарат — рефрактометр, устройство которого основано на изменении угла преломления луча света в зависимости от количественного содержания белка в исследуемой жидкости. Пересчет показателя рефрактометра на количество белка производят по специальной таблице.

У здорового человека содержание общего белка в сыворотке колеблется в пределах 6-8 г%, альбуминов — 4,6-6,5 г%, глобулинов — 1,2- 2,3 г%, фибриногена — 0,2-0,4 г%. Альбуминово-глобулиновый коэффициент (А/Г) колеблется в пределах 1,5-2,4.

2. Определение белковых фракций методом электрофореза на бумаге. Принцип этого метода заключается в следующем. При пропускании электрического тока в специальной камере через бумажную ленту, смоченную электролитом, с нанесенной на ней каплей сыворотки или плазмы, происходит разделение белковых фракций в зависимости от разницы их электрического потенциала и величины белковых молекул. При помощи этого метода можно определить в сыворотке и плазме крови количество альбуминов, at-, а2-, (3- и у-глобулинов, а в плазме также и фибриноген.

Читайте также:  Желчегонные средства для печени у детей

У здорового человека относительное содержание белковых фракций при определении их методом электрофореза на бумаге, следующее: альбумины- 55-65%, а1-глобулины 3-6%, а2-глобулины 7-10%, в-глобулины — 7-12%, у-глобулины — 13-19%.

При заболеваниях печени общее количество белка мало изменяется. Лишь при длительных хронических заболеваниях, особенно при циррозе печени, наблюдается гипопротеинемия (снижение общего количества белка). При воспалительных заболеваниях печени — гепатитах — отмечается умеренное уменьшение количества альбуминов, увеличение у-глобулинов. При циррозе печени отмечается значительное снижение количества альбуминов и выраженное увеличение у-глобулинов. При механической желтухе имеет место уменьшение количества альбуминов и умеренное увеличение a2-, в- и у-глобулинов.

3. Определение содержания в крови фибриногена и протромбина, которое обычно бывает понижено при поражениях паренхимы печени (гепатит, цирроз печени), особенно острых. При этих поражениях содержание протромбина в крови может уменьшиться и не увеличивается и после введения витамина К (который в норме способствует синтезу протромбина в печени), при механической желтухе уровень протромбина в крови повышается после введения витамина К.

4. Осадочные пробы. К ним относятся проба Таката-Ара (фуксинсулемовая проба), формоловая проба, коагуляционная проба Вельтмана, тимоловая проба и некоторые другие. Сущность этих проб заключается в том, что у больных с поражением паренхимы печени при прибавлении к сыворотке крови определенных веществ происходит помутнение сыворотки, чего не бывает у здоровых людей. Причиной этого помутнения является нарушение нормального взаимоотношения между мелкодисперсными и грубодисперсными белками крови в результате нарушения функции печени в отношении белкового обмена. Методики этих проб описываются в специальных руководствах по лабораторной технике.

Для исследования функции печени в отношении липоидного обмена определяют количество в крови холестерина. В норме оно равно 160-200 мг%. При механической желтухе количество холестерина остается нормальным или даже повышается, при паренхиматозной — нередко понижается, поскольку паренхима печени играет большую роль в синтезе холестерина.

Роль печени в липоидном обмене не ограничивается синтезом холестерина. В печени происходит разложение и выделение холестерина, а также синтез фосфолипидов и нейтрального жира. 60-75% холестерина в крови находится в виде эстеров, остальной холестерин находится в свободном состоянии. Поэтому для суждения о роли печени в липоидном обмене имеет значение не только определение общего количества холестерина, но и раздельное определение свободного и эстерифицированного холестерина. Следует также отметить, что большинство липидов находится в крови в составе белково-липидных комплексов. К их числу относятся липопротеидные фракции, количественное соотношение которых определяется методом электрофореза. Липопротеиды синтезируются в печени, а затем печеночными клетками выделяются в кровь. При заболеваниях печени уменьшается процент эстерифицированного холестерина и иногда изменяются соотношения липопротеидных фракций. Однако нарушение жирового обмена наблюдается лишь при тяжелых диффузных поражениях печени, и поскольку определение показателей жирового обмена сложно, оно не нашло широкого применения в клинике.

Для исследования обезвреживающей функции печени большое распространение получила проба Квика-Пытеля. Она основана на том, что в нормальной печени из бензойной кислоты и аминокислоты — гликоколя — синтезируется гиппуровая кислота. Производится проба следующим образом. Утром в день пробы больной съедает завтрак (100 г хлеба с маслом и стакан чая с сахаром). Через час он опорожняет мочевой пузырь до отказа и выпивает 6 г натрия бензоата в полустакане воды. Затем собирается вся моча, выделенная больным в течение 4 ч (все это время больной не пьет). Измеряют количество выделенной мочи и, если ее оказывается больше 150 мл, прибавляют несколько капель ледяной уксусной кислоты и выпаривают до объема 150 мл. После этого мочу переливают в химический стаканчик, прибавляют NaCl из расчета 30 г на каждые 100 мл мочи и нагревают до полного растворения соли. После охлаждения до 15-20° С добавляют 1-2 мл децинормального раствора H2S04, в результате чего выпадают кристаллы гиппуровой кислоты. Для ускорения кристаллизации жидкость помешивают. Затем мочу охлаждают на льду или в холодной воде и фильтруют через маленький фильтр. Осадок промывают до тех пор, пока промывная вода полностью не освобождается от H2S04, что доказывается пробой с ВаС12. Воронку с фильтром опускают в тот же стакан, в котором происходит осаждение гиппуровой кислоты, и наливают туда 100 мл горячей воды, приливая ее пипеткой по стенке, чтобы весь осадок растворился. После этого титруют горячим полунормальным раствором едкого натра, прибавив в качестве индикатора несколько капель раствора фенолфталеина.

Расчет производится следующим образом. 1 мл 0,5-нормального раствора едкого натра эквивалентен 1 мл 0,5-нормального раствора натрия бензоата, а 1 мл последнего соответствует 0,072 г гиппуровой кислоты. Следовательно, количество миллилитров 0,5-нормального раствора едкого натра, умноженное на 0,072, показывает количество гиппуровой кислоты в граммах. Так как в 150 жл воды остаются нерастворенными 0,15 г гиппуровой кислоты, следует эту цифру прибавить к вычисленному количеству гиппуровой кислоты. В норме у здорового человека, принявшего 6 г натрия бензоата, за 4 ч выделяется 3-3,5 г гиппуровой кислоты. Если ее выделяется меньше, то это указывает на понижение синтетической (обезвреживающей) функции печени.

Если моча содержит белок, ее следует предварительно освободить от него.

Для исследования экскреторной функции печени применяются пробы с нагрузкой билирубином и различными красками, которые адсорбируются в печени и выделяются с желчью в двенадцатиперстную кишку.

Билирубиновая проба (по Бергману и Эльботу).

Исследуемому вводят внутривенно 0,15 г билирубина в 10 см3 раствора соды и через 3 ч исследуют кровь на содержание билирубина. В норме уровень билирубина в крови остается нормальным. При некоторых заболеваниях печени обнаруживается гипербилирубинемия, что является показателем понижения способности печеночных клеток выделять билирубин из крови. Эта проба позволяет обнаружить нарушение этой функции печени и в тех случаях, когда уровень билирубина в крови без нагрузки им оказывается нормальным.

Для изучения водорегулирующей функции печени применяется проба с водной нагрузкой. Больной получает в течение 6 ч 900 мл слабого чая (по 150 мл через каждый час). Перед каждым приемом жидкости он опорожняет мочевой пузырь. Определяется суммарный диурез. У здорового человека выпитая жидкость выделяется за 6 ч. Задержка жидкости указывает на поражение печени, если исключены сердечная или почечная недостаточность.

Ферментативная активность печени изучается путем определения активности различных ферментов в сыворотке крови. Для этого используются колориметрический и спектрофотометрический методы. Эти методы описаны в специальных руководствах по лабораторным исследованиям.

Важное диагностическое значение при заболеваниях печени имеет повышение активности клеточных ферментов — трансаминаз (аминотрансфераз) и альдолазы. Из трансаминаз наибольшее значение приобретает определение активности глютаминощавелевоуксусной и глютаминопировиноградной трансаминаз.

В норме активность глютаминощавелевоуксусной трансаминазы колеблется в пределах от 12 до 40 единиц (в среднем 25 единиц), глютаминопировиноградной трансаминазы — от 10 до 36 единиц (в среднем 21 единица), альдолазы — от,5 до 8 единиц.

Трансаминазы и альдолаза в большом количестве содержатся в печеночных клетках и в сердечной мышце. При поражениях этих органов (гепатит, инфаркт миокарда) эти ферменты в значительном количестве поступают в кровь. Так, при болезни Боткина еще до появления желтухи, а также при безжелтушной форме заболевания значительно повышается активность трансаминаз и альдолазы. При механической и гемолитической желтухах активность этих ферментов нормальна или незначительно повышена.

Пункция печени.

Для более детального изучения изменений в паренхиме печени при ее заболеваниях производится пункция печени с последующим цитологическим исследованием печеночного пунктата. Особенную ценность этот метод приобретает для диагностики рака печени. Однако в связи с возможными осложнениями (кровотечение, инфицирование, прокол желчного пузыря и др.) пункция показана лишь в тех случаях, когда возникает значительное затруднение в установлении точного диагноза.

Прокол печени проводится иглой для внутривенных вливаний, надетой на стерильный и обезвоженный двух-пятиграммовый шприц. Предварительно путем тщательной пальпации печени определяют место прокола. Если печень изменена диффузно, прокол делают в любом месте органа, если же подозреваются изменения лишь в определенном месте, прокол делают в этом участке. В случаях, когда печень не выступает из-под реберной дуги или выступает незначительно, прокол делают в IX-X межреберье по правой средней подмышечной линии.

Иглу извлекают при появлении в шприце первых капель крови. Содержимое иглы выдувают поршнем шприца на предметные стекла и делают мазки. Мазки окрашивают по Романовскому, исследуют под микроскопом.

Для получения кусочка ткани производится пункционная биопсия печени с помощью иглы Менгини, длиной 7 см и диаметром 1,2 мм, со специальным стержнем, выполняющим роль клапана. Игла через резиновую трубку соединяется с 10-граммовым шприцом, содержащим 3 мг физиологического раствора. Физиологический раствор помогает более легко получить ткань печени, а игла обеспечивает получение цилиндрического кусочка.

При гепатите и циррозе в мазках обнаруживаются дистрофические изменения в печеночных клетках, наличие элементов мезенхимы; при раке печени — атипичные раковые клетки.

Лапароскопия печени. Важным методом исследования в диагностике заболеваний печени и желчных путей является метод лапароскопии — осмотр брюшной полости и находящихся в ней органов. Для проведения лапароскопии применяется специальный аппарат — лапароскоп, который вводится в брюшную полость после наложения пневмоперитонеума. Через оптическую трубку лапароскопа производится осмотр и фотографирование органов брюшной полости. Осмотр печени позволяет судить о ее размерах, окраске, характере поверхности, состоянии переднего края и консистенции. Через лапароскоп можно производить пункционную биопсию печени.

Скеннирование печени. В последнее время в клиническою практику начали внедряться радиоизотопные методы исследования различных органов. Одним из этих методов является метод скеннирования — автоматической топографической регистрации уровня радиоактивности в различных точках исследуемого объекта.

Аппарат для скеннирования — скеннер — представляет собой высокочувствительный гамма-топограф. Основными его узлами являются: сцинтилляционный датчик, регистрирующий гамма-излучения; детектор, преобразующий радиоактивное излучение в энергию электрических импульсов, автоматически передвигающийся по определенной траектории над объектом исследования; регистрирующее устройство, которое дает штриховое изображение объекта исследования.

Скеннирование печени осуществляется при помощи раствора красителя — бенгальской розы, меченного йодом-131, или коллоидного раствора изотопа золота-198. Бенгальская роза избирательно накапливается в клетках паренхимы печени, а затем выделяется желчью в кишечник; золото-198 в основном накапливается в купферовских клетках печени, из которых оно практически не выводится. Один из указанных растворов вводят внутривенно в дозе 200 мккюри и через 15-25 мин начинают исследование.

В норме на скеннограмме печень не выходит из-под реберной дуги, ее контуры ровные и конфигурация не изменена, распределение штриховки равномерное, менее интенсивное у краев печени, так как уровень радиоактивности над ними меньше, чем в центре.

При заболеваниях печени на скеннограмме отмечаются изменения границ печени, диффузное ослабление штриховки (при хронических гепатитах), неодинаковая ее интенсивность (при циррозах печени), отсутствие штриховки в отдельных участках в результате дефекта поглощения радиоактивного индикатора (рак, эхинококк, абсцесс и др.).

источник

Не задавайтесь подобным вопросом, если у вас здоровые почки, и контролируйте потребление белка, если они больны. Самый разумный подход – постепенно наращивать потребление белка до более высокого уровня в рационе, а не «прыгать двумя ногами одновременно» – но об этом так, к слову.

Как правило, при повышенном употреблении белка рекомендуется пить больше воды. Пока нет внятного научного обоснования, почему так следует делать, но возможно это разумный подход.

Наблюдения за ведущими активный образ жизни спортсменами-мужчинами и измерение уровня мочевины, креатинина и альбумина в моче показали, что в диапазоне приема белка от 1,28 до 2,8 г/кг веса тела испытуемого никаких существенных изменений не наблюдалось (1). Данный эксперимент продолжался всего 7 дней, но и другое исследование не показало ассоциаций между количеством потребляемого белка и здоровьем почек (у женщин в постменопаузальный период) (2). «Повышенное содержание белка» в этом случае определялось, как 1,1±0,2 г/кг веса тела, этот показатель был связан с увеличением скорости клубочковой фильтрации (2). Исследование с участием медсестер подтверждает полученные результаты. Но при этом позволяет предположить, что данные о безвредности белка не относятся к случаям заболевания почечной недостаточностью и другим болезням почек, а также, что немолочные белки животного происхождения могут быть оказаться более опасными для организма, чем другие белки (3).

Читайте также:  Чистка печени от паразитов народными средствами в домашних условиях

Существует предположение, что потребление белка приводит к функциональным изменениям в почках (4). Белок может влиять на работу почек (5,6), поэтому при его употреблении существует вероятность их повреждения. Наиболее выраженные результаты были получены в ходе экспериментов на мышах (белок составлял от 10-15% до 35-45% суточного рациона за раз) (7,8). Также в ходе одного исследования с участием здоровых людей было выявлено, что удвоение объема потребляемого белка (от 1,2 до 2,4 г/кг веса тела) приводит к превышению нормы показателей белкового метаболизма в крови. Была отмечена тенденция к адаптации организма – увеличению скорости клубочковой фильтрации, но этого было не достаточно, чтобы привести к норме показатели мочевой кислоты и мочевины крови в течение 7 дней (9).

Все эти исследования, прежде всего, говорят о том, что слишком много белка приводят к слишком быстрым изменениям, а процесс постепенного наращивания объемов не ухудшает почечную функцию (10). Это значит, что целесообразнее постепенно менять объем потребления белка на протяжении относительно длительного времени.

Людям с заболеваниями почек рекомендуется использовать диеты с ограниченным употреблением белка, так как это позволит замедлить неизбежное, казалось бы, ухудшение состояния (11,12). Отсутствие контроля за потреблением белка у пациентов с заболеваниями почек ускоряет (или, как минимум, не замедляет) процесс ухудшения их работы (3).

Нет никаких оснований считать, что нормальные объемы потребления белка, являющегося часть обычного рациона, могут быть вредными для печени здоровых крыс и людей. Однако, существуют данные предварительных исследований, согласно которым, очень большие количества белка после достаточно длительной голодовки (более 48 часов) могут привести к острой травме печени.

Когда наблюдается вредное влияние белка на печень?

Действующие стандарты лечения заболеваний печени (цирроз) рекомендуют уменьшать потребление белка, так как он является причиной накопления аммиака в крови (13,14), что вносит свой негативный вклад в развитие печеночной энцефалопатии (15).

Как минимум, на одной животной модели было показано, что повреждения печени развиваются при цикличном чередовании 5-дневных периодов достаточного потребления белка и периодов белкового дефицита (16). Сходный эффект наблюдался при потреблении пищи, содержащей 40-50% казеина, после 48-часового голодания (17). В последнем исследовании отмечается, что в группах, получавших пищу с 35%-ным и 50%-ным содержанием казеина наблюдались более высокие уровни аспартатаминотрансферазы (АСТ) и аланинаминотрансферазы (АЛТ) по сравнению с нижней границей объема потребляемого белка в контрольной группе. Это говорит об эффективной реакции организма на фоне синдрома возобновленного кормления (нарушения метаболизма после длительного периода недоедания) в целом и при его негативном побочном влиянии на ферменты печени (18,19). Повышение уровня ферментов печени в данном исследовании наблюдалось одновременно со снижением экспрессии (активности) цитопротекторного гена Hsp72, кодирующего белки теплового шока, и увеличением активности генов с-Fos и nur-77, которые активируются в ответ на повреждения.

Таким образом, в ходе исследований на животных были получены предварительные доказательства того, что повышенное потребление белка (35-50%) в момент возобновления кормления после 48-часового голодания может нанести вред печени. Более короткие периоды голодания не рассматривались.

И, наконец, афлатоксины (токсичные вещества, которые образуются в некоторых орехах и семенах), как известно, обладают более канцерогенным действием (вызывают рак) при диетах с повышенным содержанием белка (20) и не столь опасны на фоне рациона с пониженным содержанием белка (21,22,23). Это объясняется тем, что токсин биоактивируется ферментной системой цитохрома Р450, общая активность которой возрастает при увеличении в рационе дозы белка. Аналогичный феномен наблюдается для лекарств, метаболизируемых системой Р450: может потребоваться увеличение их дозировки на фоне рациона с повышенной дозой белка из-за увеличения скорости обмена веществ (24).

В приведенном выше исследовании само по себе употребление больших количеств белка не приводит к негативным побочным эффектам, так как при этом все-таки требуется пероральное введение афлатоксина, которого можно было бы избежать. Но, с другой стороны, упомянуть об этом все равно стоит.

По данной теме также было еще одно исследование 1974 года, которое показало, что рацион с 35%-ным содержанием казеина приводит к росту уровней АЛТ и АСТ у крыс (25). Но, кажется, результаты этого исследования были не воспроизведены.

Помимо вышеописанных ситуаций, не существует каких-либо негативных взаимодействий самого по себе белка на печень. То есть, вы можете без опасений есть белок, если у вас здоровая печень.

Аминокислоты – это кислоты, не так ли? Что насчет кислотности?

Теоретически можно доказать вред аминокислот за счет их избыточной кислотности. Но клинической проблемой это не является: их кислотность слишком мала, чтобы причинить какие-либо неприятности.

Минеральная плотность костной ткани (МПКТ)

Анализ крупного обзорного исследования не дает никакой связи между потреблением белка и риском переломов костей (показатель их здоровья). Исключением является ситуация, когда на фоне повышенной дозы белка в рационе общее потребление кальция падает ниже уровня 400 мг/1000 ккал ежедневно (хотя отношение рисков было довольно слабым и составило 1,51 при сравнении с самой высокой квартилью) (26). В других исследованиях сходной корреляции выявить не удалось, хотя логически этого следовало бы ожидать (27,28).

В ходе одного интервенционного исследования было показано, что потребление белка на самом деле положительно влияет на минеральную плотность костной ткани. Но данная взаимосвязь была выявлена лишь в случаях, когда контролировалось влияние сульфатов, полученных при окислении серосодержащих аминокислот (29).

Соевый белок, похоже, сам по себе обладает дополнительным защитным эффектом для костной ткани у женщин в постменопаузе, что может быть связано с содержанием в сое изофлавонов (30). Для получения дополнительной информации, пожалуйста, прочитайте наш список часто задаваемых вопросов об изофлавонах сои.

Почки могут резко увеличивать скорость клубочковой фильтрации, или скорость фильтрации крови. Они делают это в ответ на потребление белка (31). При некоторых заболеваниях данный компенсационный механизм не срабатывает, поэтому в таких случаях контроль за потреблением белка является частью терапии (32).

Кроме того, почки участвуют в регулировании кислотно-щелочного баланса в организме при помощи бикарбонатной буферной системы (33). Нарушение кислотно-щелочного баланса может привести к появлению патологических симптомов и развитию почечных осложнений.

Данными защитными способностями, по всей видимости, обладают здоровые почки, но при заболеваниях они начинают давать сбои.

В одном из исследований крысы подвергались резкому воздействию значительных доз белка в рационе, в результате чего у них наблюдалось ухудшение работы почек. Но «тренировки с отягощениями» уменьшали у некоторых из них негативный эффект и оказывали защитные действие (8).

1. Poortmans JR, Dellalieux O Do regular high protein diets have potential health risks on kidney function in athletes . Int J Sport Nutr Exerc Metab. (2000)

2. Beasley JM, et al Higher biomarker-calibrated protein intake is not associated with impaired renal function in postmenopausal women . J Nutr. (2011)

3. Knight EL, et al The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency . Ann Intern Med. (2003)

4. Brändle E, Sieberth HG, Hautmann RE Effect of chronic dietary protein intake on the renal function in healthy subjects . Eur J Clin Nutr. (1996)

5. King AJ, Levey AS Dietary protein and renal function . J Am Soc Nephrol. (1993)

6. Dietary protein intake and renal function

7. Wakefield AP, et al A diet with 35% of energy from protein leads to kidney damage in female Sprague-Dawley rats . Br J Nutr. (2011)

8. Aparicio VA, et al Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats . Br J Nutr. (2011)

9. Frank H, et al Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men . Am J Clin Nutr. (2009)

10. Wiegmann TB, et al Controlled changes in chronic dietary protein intake do not change glomerular filtration rate . Am J Kidney Dis. (1990)

11. Levey AS, et al Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study . Am J Kidney Dis. (1996)

12. [No authors listed Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study . J Am Soc Nephrol. (1996)

13. Merli M, Riggio O Dietary and nutritional indications in hepatic encephalopathy . Metab Brain Dis. (2009)

14. Starr SP, Raines D Cirrhosis: diagnosis, management, and prevention . Am Fam Physician. (2011)

15. Ong JP, et al Correlation between ammonia levels and the severity of hepatic encephalopathy . Am J Med. (2003)

16. Caballero VJ, et al Alternation between dietary protein depletion and normal feeding cause liver damage in mouse . J Physiol Biochem. (2011)

17. Oarada M, et al Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice . Br J Nutr. (2011)

18. Sogawa N, et al The changes of hepatic metallothionein synthesis and the hepatic damage induced by starvation in mice . Methods Find Exp Clin Pharmacol. (2003)

19. Hepatocellular Injuries Observed in Patients with an Eating Disorder Prior to Nutritional Treatment

20. Madhavan TV, Gopalan C The effect of dietary protein on carcinogenesis of aflatoxin . Arch Pathol. (1968)

21. Appleton BS, Campbell TC Effect of high and low dietary protein on the dosing and postdosing periods of aflatoxin B1-induced hepatic preneoplastic lesion development in the rat . Cancer Res. (1983)

22. Mandel HG, Judah DJ, Neal GE Effect of dietary protein level on aflatoxin B1 actions in the liver of weanling rats . Carcinogenesis. (1992)

23. Blanck A, et al Influence of different levels of dietary casein on initiation of male rat liver carcinogenesis with a single dose of aflatoxin B1 . Carcinogenesis. (1992)

24. Hornsby LB, Hester EK, Donaldson AR Potential interaction between warfarin and high dietary protein intake . Pharmacotherapy. (2008)

25. Bolter CP, Critz JB Plasma enzyme activities in rats with diet-induced alterations in liver enzyme activities . Experientia. (1974)

26. Dargent-Molina P, et al Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study . J Bone Miner Res. (2008)

27. Calvez J, et al Protein intake, calcium balance and health consequences . Eur J Clin Nutr. (2011)

28. High-Protein Weight Loss Diets and Purported Adverse Effects: Where is the Evidence?

29. Thorpe M, et al A positive association of lumbar spine bone mineral density with dietary protein is suppressed by a negative association with protein sulfur . J Nutr. (2008)

30. Zhang X, et al Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women . Arch Intern Med. (2005)

31. von Herrath D, et al Glomerular filtration rate in response to an acute protein load . Blood Purif. (1988)

32. Bosch JP, et al Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate . Am J Med. (1983)

33. Skelton LA, Boron WF, Zhou Y Acid-base transport by the renal proximal tubule . J Nephrol. (2010)

34. Yaqoob MM Acidosis and progression of chronic kidney disease . Curr Opin Nephrol Hypertens. (2010)

35. Kraut JA, Madias NE Consequences and therapy of the metabolic acidosis of chronic kidney disease . Pediatr Nephrol. (2011)

источник