Меню Рубрики

Биосинтез таг в жировой ткани и печени

Обмен жиров или ТАГ включает в себя несколько стадий: 1). Синтез жиров (из глюкозы, эндогенные жиры), 2). Депонирование жиров, 3). Мобилизация.

В организме жиры могут синтезироваться из глицерина и из глюкозы. Основные 2 субстрата для синтеза жиров:

2) ацилКоА (активированная ЖК).

Синтез ТАГ происходит через образование фосфатидной кислоты.

α-ГФ в организме человека может образовываться двумя путями: в органах, в которых активен фермент глицеролкиназа, ГФ может образоваться из глицерина, в органах, где активность фермента низкая, ГФ образуется из продуктов гликолиза (т.е. из глюкозы).

Если в реакцию вступает восстановленная форма НАД (НАДН+Н ), то это реакция

восстановления и фермент называется по продукту + «ДГ».

Биосинтез ТАГ наиболее интенсивно протекает в печени и жировой ткани. В жировой

ткани синтез ТАГ протекает из УВ, т.е. часть глюкозы, поступившей с пищей может

превращаться в жиры (когда углеводов поступает больше, чем необходимо для

возобновления запаса гликогена в печени и мышцах).

Жиры, синтезированные в печени (двумя путями) упаковываются в частицы ЛОИП,

поступают в кровь —> ЛП-липазе, которая гидролизует ТАГ или жиры из этих частиц на

ЖК и глицерин. ЖК поступают в жировую ткань, где депонируются в виде жиров, либо

используются как источник энергии органами и тканями (р-окисление), а глицерин

поступает в печень, где может использоваться для синтеза ТАГ или фосфолипидов.

В жировой ткани депонируются жиры, которые образованы из глюкозы, глюкоза дает

оба или 2 субстрата для синтеза жира.

После приема пищи (абсорбционный период) f концентрация глюкозы в крови, |

концентрация инсулина, инсулин активирует:

1. транспорт глюкозы в адипоциты,

—► активирует синтез жира в жировой ткани и его депонирование —> существует 2 источника жиров для депонирования в жировой ткани:

1. экзогенные (ТАГ из хиломикронов и ЛОНП кишечника, переносящие пищевые
жиры)

2. эндогенные жиры (из ЛОНП печени и образующиеся ТАГ в самих жировых
клетках).

Мобилизация жиров — это гидролиз жиров, находящихся в адипоцитах до ЖК и глицерина, под действием гормонзависимой ТАГ-липазы, которая находится в клетках и активируется в зависимости от потребностей организма в источниках энергии (в постабсорбтивном периоде, т.е. в промежутках между приемами пищи, при голодании, стрессе, длительной физической работе, т.е. активируется адреналином, глюкагоном и соматотропным гормоном (СТГ).

При длительном голодании концентрация глюкагона увел., это приводит к снижению синтеза ЖК, увеличению β-окисления, увеличеню мобилизации жиров из депо, увеличен синтез кетоновых тел, увеличен глюконеогенез.

Отличие действия инсулина в жировой ткани и печени:

↑ концентрации инсулина в крови приводит к ↑ активности ПФП, ↑ синтеза ЖК, ↑ гликолиза (глюкокиназа, фосфофруктокиназа (ФФК), пируваткиназа — ферменты гликолиза; глюкозо-6-ДГ — фермент ПФП; ацетилКоАкарбоксилаза — фермент синтеза ЖК).

В жировой ткани активируется ЛП-липаза и депонирование жиров, активируется поступление глюкозы в адипоциты и образование из нее жиров, которые тоже депонируются.

В организме человека существует 2 формы депонированного энергетического материала:
1. гликоген; 2. ТАГ или нейтральные жиры.

Отличаются по запасам и очередности мобилизации. Гликогена в печени от 120-150г, может быть до 200, жиров в норме

Гликогена хватает (в качестве источника энергии) на 1 сутки голодания, а жиров — на 5-7 недель.

При голодании и физической нагрузке в первую очередь используются запасы гликогена, затем постепенно нарастает скорость мобилизации жиров. Кратковременные физические

нагрузки обеспечиваются энергией, за счет распада гликогена, а при длительных физических нагрузках используются жиры.

При нормальном питании количество жиров в жировой ткани постоянно, но жиры постоянно обновляются. При длительном голодании и физических нагрузках скорость мобилизации жиров больше, чем скорость депонирования à количество депонированных жиров уменьш. (похудение). Если скорость мобилизации ниже, чем скорость депонирования — ожирение.

Причины: несоответствие между количеством потребляемой пищи и энергозатратами организма, и поскольку мобилизация и депонирование жиров регулируются гормонами —» ожирение является характерным признаком эндокринных заболеваний.

Обмен холестерина. Биохимические основы возникновения атеросклероза. Основные функции холестерина в организме:

1. основная: большая часть Хс используется для построения клеточных мембран;

2. Хс служит предшественником желчных кислот;

3. служит предшественником стероидных гормонов и витамина D3 (половые
гормоны и гормоны коры надпочечников).

В организме на долю Хс приходится основная масса всех стероидов

140г. Синтезируется Хс в основном в печени (-80%), в тонком кишечнике (-10%), в коже (-5%), скорость синтеза Хс в организме зависит от количества экзогенного Хс, если с пищей поступает более 1г Хс (2-3г) синтез собственного эндогенного Хс ингибируется, если Хс поступает мало (вегетарианцы) скорость синтеза эндогенного Хс |. Нарушение в регуляции синтеза Хс (а также образование его транспортных форм —> гиперхолестеринемия —» атеросклероз —> ИБС —► инфаркт миокарда). Норма поступления Хс >1г (яйца, масло (сливочное), печень, мозг).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8582 — | 7403 — или читать все.

95.83.2.240 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Вопрос 49.Биосинтез таг (липогенез). Особенности биосинтеза таг в печени и жировой ткани. Гормональная регуляция. Образование лпонп в печени.

Печень — основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком Эр гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идет через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и секретируются в кровь.В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок апоВ-100. Это очень «длинный» белок , содержащий 11536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина. ЛПОНП из печени секретируется в кровь, где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛППП , а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров. Скорость синтеза ЖК и жиров в печени существенно зависит от состава пищи. Если в пище содержится белее 10% жиров, то скорость синтеза жиров в печени резко снижается.

Гормональная регуляция синтеза жиров. Какой процесс будет преобладать в организме – синтез жиров или их распад зависит от поступления пищи и физической активности В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии – липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз. В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется ее экспонирование на поверхность эндотелия , следовательно в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы – ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируется. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путем дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей в жиры. Это – регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе ЖК из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени – увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе ТАГ.

источник

Печень — основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и сек-ретируются в кровь

В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок — апоВ-100. Это очень «длинный» белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

ЛПОНП из печени секретируются в кровь (рис. 8-23), где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛГШП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.

Скорость синтеза жирных кислот и жиров в печени существенно зависит от состава пищи. Если в пище содержится более 10% жиров, то скорость синтеза жиров в печени резко снижается.

Регуляция синтеза жиров. В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется её экспонирование на поверхность эндотелия; следовательно, в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы — ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируются. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путём дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей, в жиры. Это — регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе жирных кислот из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени — увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе триацилглицеринов.

Запасание жиров в жировой ткани — основная форма депонирования источников энергии в организме человека (табл. 8-6). Запасы жиров в организме человека массой 70 кг составляют 10 кг, но у многих людей количество жиров может быть значительно больше.

Жиры образуют в адипоцитах жировые вакуоли. Жировые вакуоли иногда заполняют значительную часть цитоплазмы. Скорость синтеза и мобилизации подкожного жира происходит неравномерно в разных частях организма, что связано с неодинаковым распределением рецепторов гормонов на адипоцитах.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8181 — | 7872 — или читать все.

источник

Биосинтез ТАГ (липогенез). Особенности биосинтеза ТАГ в печени и жировой ткани. Гормональная регуляция. Образование ЛПОНП в печени.

Печень-основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком Эр гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идет через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и секретируются в кровь.В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок апоВ-100. Это очень «длинный» белок , содержащий 11536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина. ЛПОНП из печени секретируется в кровь, где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛППП , а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров. Скорость синтеза ЖК и жиров в печени существенно зависит от состава пищи. Если в пище содержится белее 10% жиров, то скорость синтеза жиров в печени резко снижается.

Читайте также:  Болезни печени и желчного пузыря обследование

Гормональная регуляция синтеза жиров. Какой процесс будет преобладать в организме – синтез жиров или их распад зависит от поступления пищи и физической активности В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии – липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз. В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется ее экспонирование на поверхность эндотелия , следовательно в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы – ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируется. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путем дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей в жиры. Это – регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе ЖК из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени – увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе ТАГ.

Образование активных форм кислорода

ОБРАЗОВАНИЕ ТОКСИЧНЫХ ФОРМ КИСЛОРОДА В ЦПЭ

В ЦПЭ поглощается около 90% поступающего в клетки О2. Остальная часть О2 используется в других окислительно-восстановительных реакциях. Ферменты, участвующие в окислительно-восстановительных реакциях с использованием Кислорода, делятся на 2 группы: оксидазы и оксигеназы. Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н2О или Н2О2. Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции.

Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот (см. раздел 9), синтезе жёлчных кислот и стероидов, в реакциях обезвреживания чужеродных веществ в печени. В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода. В невозбуждённом состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамически стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.

Полное восстановление О2 происходит в результате 4 одноэлектронных переходов. Супероксид, пероксид и гидроксильный радикал — активные окислители, что представляет серьёзную опасность для многих структурных компонентов клетки (рис. 6-30).

Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции.

Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QH2-дегидрогеназного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QH2 на кислород. В отличие от рассмотренного механизма на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) «утечка» электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Сu и восстанавливающих О2 без освобождения промежуточных свободных радикалов. В фагоцитирующих лейкоцитах (гранулоцитах, макрофагах и эозинофилах) в процессе фагоцитоза усиливаются поглощение кислорода и образование активных радикалов. Активные формы кислорода образуются в результате активации NADPH-оксидазы, преимущественно локализованной на наружной стороне плазматической мембраны, инициируя так называемый «респираторный взрыв» с образованием активных форм кислорода. Защита организма от токсического действия активных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатион-пероксидазы, а также с действием антиоксидантов.

2(18) Дисахариды . Дисахариды — наиболее распространённые олигомерные углеводы, встречающиеся в свободной форме, . По химической природе дисахариды представляют собой гликозиды, которые содержат 2 моносахарида, соединённые гликозидной связью в α- или β-конфигурации. В пище содержатся в основном такие дисахариды, как сахароза, лактоза и мальтоза

Сахароза — дисахарид, состоящий из α-D-глюкозы и β-D-фруктозы, соединённых α,β-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. не относится к восстанавливающим сахарам. Сахароза — растворимый дисахарид со сладким вкусом. Источники-сахарная свёкла, сахарный тростник. .

Лактоза — молочный сахар; важнейший дисахарид молока млекопитающих. В лактозе аномерная ОН-группа первого углеродного атома остатка D-галактозы связана β-гликозидной связью с четвёртым углеродным атомом D-глюкозы (β-1,4-связь). Поскольку аномерный атом углерода остатка глюкозы не участвует в образовании гликозидной связи,лактоза относится к восстанавливающим сахарам.

Мальтоза поступает с продуктами, содержащими частично гидролизованный крахмал, например, солод, пиво. Мальтоза также образуется при расщеплении крахмала в кишечнике. Мальтоза состоит из двух остатков D-глюкозы, соединённых α-1,4-гликозидной связью.

Изомальтоза — промежуточный продукт, образующийся при расщеплении крахмала в кишечнике. Состоит из двух остатков D-глюкозы, но соединены эти моносахариды α-1,6-гликозидной связью.

Дата добавления: 2018-10-27 ; просмотров: 211 ; ЗАКАЗАТЬ РАБОТУ

источник

52. Различия синтеза триацилглицеринов (таг) в печени и жировой ткани. Взаимопревращение глицерофосфолипидов. Жировое перерождение печени. Липотропные факторы.

Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования источников энергии. Жиры — наиболее выгодная и основная форма депонирования энергии. Запасы гликогена в организме не превышают 300 г и обеспечивают организм энергией не более суток. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 нед). Синтез жиров активируется в абсорбтивный период и происходит в основном в жировой ткани и печени. Но если жировая ткань — место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани (в первую очередь, в жировую). Синтез жиров в печени и жировой ткани стимулируется инсулином. Мобилизация жира активируется в тех случаях, когда глюкозы недостаточно для обеспечения энергетических потребностей организма: в постабсорбтивный период, при голодании и физической работе под действием гормонов глюкагона, адреналина, соматотропина. Жирные кислоты поступают в кровь и используются тканями как источники энергии.

А. Синтез жиров в жировой ткани и печени

Синтез жиров происходит в абсорбтивный период в печени и жировой ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.

Синтез жиров в печени и жировой ткани идёт через образование промежуточного продукта — фосфатидной кислоты (рис. 8-21).

Предшественник фосфатидной кислоты — глицерол-3-фосфат, образующийся в печени двумя путями:

восстановлением дигидроксиацетонфосфата — промежуточного метаболита гликолиза;

фосфорилированием глицеролкиназой свободного глицерола, поступающего в печень из крови (продукт действия ЛП-липазы на жиры ХМ и ЛПОНП).

В жировой ткани глицеролкиназа отсутствует, и восстановление дигидроксиацетонфосфата — единственный путь образования глицерол-3-фосфата. Следовательно, синтез жиров в жировой ткани может происходить только в абсорбтивный период, когда глюкоза поступает в адипоциты с помощью белка-переносчика глюкозы ГЛЮТ-4, активного только в присутствии инсулина, и распадается по пути гликолиза.

Синтез жиров в жировой ткани

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацилглицерол, который ацилируется с образованием триацилглицерола.

Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

Рис. 8-21. Синтез жиров в печени и жировой ткани.

Синтез ТАГ в печени. Образование ЛПОНП в печени и транспорт жиров в другие ткани

Печень — основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и сек-ретируются в кровь (рис. 8-23).

В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок — апоВ-100. Это очень «длинный» белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

ЛПОНП из печени секретируются в кровь (рис. 8-23), где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛГШП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.

Скорость синтеза жирных кислот и жиров в печени существенно зависит от состава пищи. Если в пище содержится более 10% жиров, то скорость синтеза жиров в печени резко снижается.

Жировое перерождение печени — чрезмерное скопление жира в гепатоцитах; наиболее частая реакция печени на повреждение.

Печени принадлежит ведущая роль в метаболизме липидов. Свободные жирные кислоты (СЖК), всасываемые из кишечника или освобождаемые в кровь из хиломикронов или жировых клеток, составляют небольшой, быстро используемый пул, который обеспечивает почти все энергетические потребности при голодании. СЖК поглощаются печенью, присоединяясь к печеночному пулу СЖК, часть которых синтезируется этим органом. Некоторые СЖК окисляются в печени до СО2 с выделением энергии, но большинство быстро включается в сложные ли-пиды (например, триглицериды, фосфолипиды, гликолипиды и эфиры холестерола). Часть этих сложных липидов входит в состав медленно используемого пула, который включает структурные липиды клеток и их депо. Большая часть триглицеридов становится частью активного пула, соединяясь со специфическими апопротеинами с образованием липопротеинов — формы, в которой триглицериды высвобождаются в плазму (например, липопротеины очень низкой плотности). Печень отвечает также за разрушение липидов (например, липопротеинов низкой плотности и остатков хиломикронов).

Читайте также:  Чистка печени грелкой маслом и лимонным соком

При жировой инфильтрации печени макровезикулярного (крупнокапельного) типа, в качестве аккумулируемых липидов обычно выступают триглицериды. Это связано с тем, что печеночные триглицериды имеют самую высокую скорость оборота из всех эфиров жирных кислот печени, а также с отсутствием регуляции потребления жирных кислот печенью по механизму торможения обратной связи. При микровезикулярной (мелкокапельной) жировой дегенерации скапливаются другие липиды (например, СЖК), что наблюдается при некоторых недостаточно изученных состояниях (например, острая жировая инфильтрация печени беременных, синдром Рейе).

Диффузное жировое перерождение печени, часто имеющее зональное распределение, сочетается со многими клиническими ситуациями. У новорожденных оно может встречаться как семейное или идиопатическое состояние; при болезни Вольмана, при муковисцидозе (наиболее вероятно в связи с недостаточностью питания), а также при врожденных нарушениях обмена гликогена, галактозы, тирозина или гомоцистина.

На более поздних этапах жизни это состояние может обнаруживаться при синдроме Рейе, недостаточности дегидрогеназы жирных кислот со средней длиной цепи, нарушении депонирования фитановой кислоты (болезнь Рефсума), болезни Вильсона, гемохроматозе, абеталипопротеинемии, дефиците холестеролэстеразы, передозировке витамина А, ожирении и диабете. Жировая инфильтрация печени может быть результатом неправильного питания и дефицита белков в пище (особенно квашиоркора), а также нарушений аминокислотного равновесия. В некоторых случаях причиной этого состояния служит злоупотребление алкоголем и прием определенных лекарственных веществ (например, кортикостероидов, тетрациклина, вальпроевой кислоты, метотрексата). К такому же результату может привести отравление четыреххлористым углеродом, желтым фосфором.

Диффузное жировое перерождение иногда осложняет операцию наложения тонкокишечного анастомоза, а также беременность.

Очаговое жировое перерождение встречается много реже и хуже распознается. Этот вид поражения печени может быть важен при дифференциальном диагнозе опухолей печени, поскольку проявляется в виде узловых образований, обычно расположенных под капсулой.

Накопление триглицеридов в печени происходит либо в результате их увеличенного синтеза, либо за счет сниженного выделения молекул этого класса из гепатоцитов. Усиленный синтез триглицеридов может быть обусловлен повышением активности триглицеридсинтетазы или увеличением концентрации СЖК в результате усиленного поглощения печенью жирных кислот (мобилизованных из жировой ткани), увеличенного их синтеза из ацетилкоэнзима А или ослабления процессов окисления жирных кислот внутри печени. К уменьшению концентрации СЖК могут привести ослабление гидролиза лизосомальными липазами, уменьшение секреции липопротеинов, а также снижение синтеза других липидов (т.е. не триглицеридов).

Механизмы, участвующие в патогенезе жирового перерождения печени, могут действовать изолированно или вместе. По-видимому, развитию жировой инфильтрации печени, вызываемой четыреххлористым углеродом, желтым фосфором, изопропанолом и различными ингибиторами белкового синтеза, способствует увеличенное поглощение печенью СЖК. Усиленный синтез СЖК из ацетилкоэнзима А, по всей вероятности, содействует жировому перерождению, связанному с дефицитом незаменимых жирных кислот, алкогольным токсикозом и лечением фенобарбиталом. Ослабление процессов окисления жирных кислот может способствовать жировой инфильтрации, индуцируемой четыреххлористым углеродом, фосфором, гипоксией и дефицитом некоторых витаминов (никотиновой кислоты, рибофлавина и пантотеновой кислоты).

Основной причиной аккумуляции триглицеридов в печени часто является угнетение продукции и секреции липопротеинов гепатоцитами. Подавление синтеза аполипопротеинов, по-видимому, наиболее важный патогенетический фактор при некоторых типах токсической жировой инфильтрации печени, вызываемой белковым дефицитом (квашиоркор) или нарушением соотношения аминокислот. К жировому перерождению печени может привести токсическое угнетение белкового синтеза за счет подавления синтеза информационной РНК (афлатоксин, токсины бледной поганки, D-галактозамин и диметилнитрозамин), ингибирова-ния синтеза транспортной РНК или ее связывания с рибосомами (пуромицин, тетрациклин), либо за счет торможения трансляции РНК (циклогексимид, эметин).

Жировое перерождение печени может быть результатом аккумулирования других нейтральных липидов. Жир и холестерол (видимые при поляризационной микроскопии как ромбовидные кристаллы с двойным лучепреломлением) обнаруживаются при болезни Вольмана и нарушении депонирования эфиров холестерола. Жировые вакуоли варьируют по размеру от мелких до средних. При болезни Нимана-Пика в гепатоцитах и купферовских клетках накапливается фосфолипид сфингомиелин. Клетки выглядят пенистыми.

При микровезикулярной (мелкокапельной) жировой дегенерации маленькие капельки СЖК, холестерола и фосфолипидов скапливаются в лизосомах. Основной дефект не выяснен, хотя и известно, что патологические и клинические особенности острой жировой дегенерации печени у беременных, при синдроме Рейе, рвотной болезни Ямайки, токсическом воздействии на печень вальпроата натрия, тетрациклина, интоксикации салицилатами у детей, болезни Вольмана, желтой лихорадке и врожденных дефектах в ферментной системе цикла мочевины имеют сходные признаки. Одной из биохимических особенностей, возможно, является нарушение метаболического окисления в митохондриях, что способствует накоплению токсических жирных кислот. К острой жировой инфильтрации печени у беременных может иметь отношение дефицит карнитина в организме.

При значительном жировом отложении печень обычно увеличена, на вид гладкая и бледная. Микроскопически основная структура может быть нормальной. Поскольку чаше всего жировое скопление представлено триглицеридами, жиры обычно выглядят как крупные капельки, которые сливаются и смещают ядро клетки к периферии. В типичном случае при алкогольном жировом перерождении печеночные клетки наполнены жировыми вакуолями, которые часто смещают их ядра к периферии. При микровезикулярном (мелкокапельном) жировом перерождении маленькие капелькиСЖК и другие липиды скапливаются во вторичных лизосомах, которые не сливаются друг с другом. В гепатоцитах выявляется пенистая цитоплазма и центрально расположенное ядро.

При действии гепатотоксинов, влияющих на синтез белков, или при белковой недостаточности питания отмечается тенденция к скоплению липидов в зоне 1. На фоне действия других гепатотоксинов или при дефиците питания в отношении иных, чем аминокислоты, факторов жиры обычно скапливаются в зоне 3. При острой жировой инфильтрации беременных мелкокапельное ожирение является диффузным, но, как правило, не распространяется на гепатоциты, расположенные в зоне 1 непосредственно вокруг портальных трактов. При синдроме Рейе, наоборот, скопление жира преобладает в зоне 1.

источник

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацил-глицерол, который ацилируется с образованием триацил-глицерола.

Кроме жирных кислот, поступающих в ади-поциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

Рис. 8-21. Синтез жиров в печени и жировой ткани.

Рис. 8-22. Депонирование жира в адипоцитах в абсорбтивном периоде.После еды при повышении концентрации глюкозы в крови увеличивается секреция инсулина. Инсулин активирует транспорт глюкозы внутрь адипоцитов, действуя на ГЛЮТ-4, синтез ЛП-липазы в адипоцитах и её экспонирование на поверхности стенки капилляров. ЛП-липаза, связанная с эндотелием сосудов, гидролизует жиры в составе ХМ и ЛПОНП. АпоС-II на поверхности ХМ и ЛПОНП активирует ЛП-липазу. Жирные кислоты проникают в адипоцит, а глицерол транспортируется в печень. Так как в адипоцитах нет фермента глицеролкиназы, то свободный глицерол не может использоваться для синтеза ТАГ в этой ткани. Активированные жирные кислоты взаимодействуют с гли-церол-3-фосфатом, образующимся из дигидроксиацетонфосфата, и через фосфатидную кислоту превращаются в ТАГ, которые депонируются в адипоцитах. Сокращения: ТАГ* — триацилглицеролы в составе ХМ и ЛПОНП; ДАФ — дигидроксиацетонфосфат.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8181 — | 7872 — или читать все.

95.83.2.240 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Образование глицерол-3-фосфата

Синтез жиров в печени и жировой ткани идёт через образование промежуточного продукта — фосфатидной кислоты (рис. 8-21).

Предшественник фосфатидной кислоты — глицерол-3-фосфат, образующийся в печени двумя путями:

  • восстановлением дигидроксиацетонфосфата — промежуточного метаболита гликолиза;
  • фосфорилированием глицеролкиназой свободного глицерола, поступающего в печень из крови (продукт действия ЛП-липазы на жиры ХМ и ЛПОНП).

В жировой ткани глицеролкиназа отсутствует, и восстановление дигидроксиацетонфосфата — единственный путь образования глицерол-3-фосфата. Следовательно, синтез жиров в жировой ткани может происходить только в абсорбтивный период, когда глюкоза поступает в адипоциты с помощью белка-переносчика глюкозы ГЛЮТ-4, активного только в присутствии инсулина, и распадается по пути гликолиза.

Синтез жиров в жировой ткани

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацилглицерол, который ацилируется с образованием триацилглицерола.

Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

Рис. 8-21. Синтез жиров в печени и жировой ткани.

Синтез ТАГ в печени. Образование ЛПОНП в печени и транспорт жиров в другие ткани

Печень — основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и сек-ретируются в кровь (рис. 8-23).

В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок — апоВ-100. Это очень «длинный» белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

ЛПОНП из печени секретируются в кровь (рис. 8-23), где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛГШП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.

Скорость синтеза жирных кислот и жиров в печени существенно зависит от состава пищи. Если в пище содержится более 10% жиров, то скорость синтеза жиров в печени резко снижается.

Читайте также:  Может ли при заболевании печени быть дерматит

В. Гормональная регуляция синтеза
и мобилизации жиров

Синтез и секреция ЛПОНП в печени. Белки, синтезированные в шероховатом ЭР (1), в аппарате Гольджи (2), формируют комплекс с ТАГ, называемый ЛПОНП, ЛПОНП комплектуются в секреторных гранулах (3), транспортируются к клеточной мембране и секретируются в кровь

Какой процесс будет преобладать в организме — синтез жиров (липогенез) или их распад (липолиз), зависит от поступления пищи и физической активности. В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии — липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз.

Регуляция синтеза жиров. В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется её экспонирование на поверхность эндотелия; следовательно, в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы — ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируются. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путём дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей, в жиры. Это — регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе жирных кислот из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени — увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе триацилглицеринов.

Запасание жиров в жировой ткани — основная форма депонирования источников энергии в организме человека (табл. 8-6). Запасы жиров в организме человека массой 70 кг составляют 10 кг, но у многих людей количество жиров может быть значительно больше.

Жиры образуют в адипоцитах жировые вакуоли. Жировые вакуоли иногда заполняют значительную часть цитоплазмы. Скорость синтеза и мобилизации подкожного жира происходит неравномерно в разных частях организма, что связано с неодинаковым распределением рецепторов гормонов на адипоцитах.

54В. Гормональная регуляция синтеза
и мобилизации жиров

Какой процесс будет преобладать в организме — синтез жиров (липогенез) или их распад (липолиз), зависит от поступления пищи и физической активности. В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии — липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз.

Регуляция синтеза жиров. В абсорбтивный период при увеличении соотношения инсулин/

Рис. 8-23. Синтез и секреция ЛПОНП в печени. Белки, синтезированные в шероховатом ЭР (1), в аппарате Гольджи (2), формируют комплекс с ТАГ, называемый ЛПОНП, ЛПОНП комплектуются в секреторных гранулах (3), транспортируются к клеточной мембране и секретируются в кровь.

глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется её экспонирование на поверхность эндотелия; следовательно, в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы — ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируются. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путём дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих

в превращении части глюкозы, поступающей с пищей, в жиры. Это — регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе жирных кислот из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени — увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе триацилглицеринов.

Запасание жиров в жировой ткани — основная форма депонирования источников энергии в организме человека (табл. 8-6). Запасы жиров в организме человека массой 70 кг составляют 10 кг, но у многих людей количество жиров может быть значительно больше.

Жиры образуют в адипоцитах жировые вакуоли. Жировые вакуоли иногда заполняют значительную часть цитоплазмы. Скорость синтеза и мобилизации подкожного жира происходит неравномерно в разных частях организма, что связано с неодинаковым распределением рецепторов гормонов на адипоцитах.

Регуляция мобилизации жиров.Мобилизация депонированных жиров стимулируется глюкагоном и адреналином и, в меньшей степени, некоторыми другими гормонами (соматотроп-ным, кортизолом). В постабсорбтивный период и при голодании глюкагон, действуя на адипоциты через аденилатциклазную систему, активирует протеинкиназу А, которая фосфо-рилирует и, таким образом, активирует гормончувствительную липазу, что инициирует липо-лиз и выделение жирных кислот и глицерина в кровь. При физической активности увеличивается секреция адреналина, который действует через β-адренергические рецепторы адипоцитов, активирующие аденилатциклазную систему (рис. 8-24). В настоящее время обнаружено 3 типа β-рецепторов: β1, β2, β3, активация которых приводит к липолитическому действию. К наибольшему липолитическому действию приводит активация β3-рецепторов. Адреналин одновременно действует и на α2-рецепторы адипоцитов, связанные с ингибирующим G-белком, что инактивирует аденилатциклазную систему. Вероятно, действие адреналина двояко: при низких концентрациях в крови преобладает его антилиполитическое действие через α2-рецепторы, а при высокой — преобладает липолитическое действие через β-рецепторы.

Для мышц, сердца, почек, печени при голодании или физической работе жирные кислоты становятся важным источником энергии. Печень перерабатывает часть жирных кислот в кетоновые тела, используемые мозгом, нервной тканью и некоторыми другими тканями как источники энергии.

В результате мобилизации жиров концентрация жирных кислот в крови увеличивается приблизительно в 2 раза (рис. 8-25), однако абсолютная концентрация жирных кислот в крови невелика даже в этот период. Т1/2 жирных кислот в крови тоже очень мал (менее 5 мин), что означает существование быстрого потока жирных кислот из жировой ткани к другим органам. Когда постабсорбтивный период сменяется аборбтивным, инсулин активирует специфическую фосфатазу, которая дефосфорилирует гормончувствительную липазу, и распад жиров останавливается.

VIII. ОБМЕН И ФУНКЦИИ ФОСФОЛИПИДОВ

Метаболизм фосфолипидов тесно связан со многими процессами в организме: образованием и разрушением мембранных структур клеток, формированием ЛП, мицелл жёлчи, образованием в альвеолах лёгких поверхностного слоя, предотвращающего слипание альвеол во время выдоха. Нарушения обмена фосфолипидов — причина многих заболеваний, в частности, респираторного дистресс-синдрома новорождённых, жирового гепатоза, наследственных заболеваний, связанных с накоплением гликолипидов, — лизосомных болезней. При лизосомных болезнях снижается активность гидролаз, локализованных в лизосомах и участвующих в расщеплении гликолипидов.

источник

Экзогенные триглицеролы после всасывания в кишечнике ресинтезируются в стенке тонкого кишечника. Синтезированные в стенке кишечника триглицериды, ввиду своих размеров попадают преимущественно в лимфатическую систему. В лимфе триглицериды связываются с белком. Таким образом, формируются мельчайшие капли – хиломикроны. Хиломикроны – самые крупные из липопротеинов крови, диаметр их более 120 нм. Однако при этом хиломикроны имеют низкую плотность (0,92-0,98 г/мл).

Триацилглицеролы составляют до 90% всей массы ХМ. По лимфатической системе они проникают в легкие, а затем в общий кровоток, где под действием липолитических ферментов липопротеинлипазы, и печеночной эндотелиальной триацилглицеринлипазы на уровне капилляров различных тканей подвергаются катаболизму. Эти ферменты активируются при наличии гепарина. При гидролизе ТАГ образуются неэстерифицированные жирные кислоты (НЭЖК) , которые утилизируются клетками мышц, жировой ткани ( кроме мозга). ХМ , обедненные ТАГ в результате катаболизма, превращаются в остаточные реминантные формы, которые утилизируются печенью.

ЛПОНП в небольшом количестве образуются в энтероцитах тонкого кишечника и в большом количестве в печени. Они транспортируют в основном эндогенные ТАГ, ХС из печени к тканям. Катаболизм их осуществляется в крови под действием тех же липолитических ферментов, которые гидролизовали ТАГ в составе ХМ, в результате чего ЛПОНП теряют большую часть ТАГ и превращаются в ЛПНП.

Биосинтез ТАГ происходит в цитоплазме клеток различных тканей, кроме клеток мозга.

1-й ресинтез ТАГ в слизистой тонкого кишечника.

Биологическое значение 1-го ресинтеза — синтез жиров, частично уже специфичных для организма человека, так как часть ВЖК — экзогенного проис­хождения, а часть — эндогенного.

Наиболее интенсивно синтез жиров идет в:

1. Энтероцитах слизистой кишечника (I per: тез ТАГ).

2. Гепатоцитах печени, в адипоцитах жиравга ткани, почках, скелетных мышцах и лактирут-: — молочной железе (II ресинтез ТАГ).

Гидролиз триацилглицеринов в первой и второй стадиях протекает быстро, а гидролиз моноацилглицеринов идет медленнее. В результате гидролиза образуется смесь, содержащая жирные кислоты, моно-, ди-, триацилглицерины, которые и всасываются эпителиальными клетками кишечника. В этих клетках происходит ресинтез липидов, которые затем поступают в другие ткани, где они откладываются в запас или подвергаются окислению. В результате окисления жиров образуется вода и оксид углерода (IV), а освободившаяся энергия накапливается в виде АТФ. При окислении1 гжира выделяется 39 кДж энергии.

3.Биохимические механизмы развития ожирения, причины развития, профилактика.

Ожирение — заболевание, характеризующееся избыточным развитием жировой ткани. Этиология ожирения. Основным фактором, приводящим к развитию ожирения, является нарушение энергетического баланса, заключающееся в несоответствии между энергетическими поступлениями в организм и их затратами. Наиболее часто ожирение возникает вследствие переедания, но может происходить из-за нарушения контроля расхода энергии. Несомненна роль наследственно-конституциональной предрасположенности, снижения физической активности, возрастных, половых, профессиональных факторов, некоторых физиологических состояний (беременность, лактация, климакс).

Симптомы ожирения. Общим признаком всех форм ожирения является избыточная масса тела. Выделяют четыре степени ожирения и две стадии заболевания—прогрессирующую и стабильную. При I степени фактическая масса тела превышает идеальную не более чем на 29%, при II — избыток составляет 30—40%, при III степени—50—99%, при IV—фактическая масса тела превосходит идеальную на 100% и более.

Иногда степень ожирения оценивается по индексу массы тела вычисляемому по формуле : = масса тела (кг)/рост (м)2, за норму принимается индекс массы, составляющий 20—24,9, при I степени — индекс 25—29,9, при II — 30—40, при III — более 40.

Больные I — II степенью ожирения обычно жалоб не предъявляют при более массивном ожирении беспокоят слабость, сонливость, снижение настроения, иногда нервозность, раздражительность; тошнота, горечь во рту, одышка, отеки нижних конечностей, боль в суставах, позвоночнике. При ожирении часто беспокоят повышенный аппетит, особенно во второй половине дня, чувство голода ночью, жажда. У женщин—различные нарушения менструального цикла, бесплодие, гирсутизм, у мужчин—снижение потенции. Нечистота и трофические нарушения кожи, мелкие розовые стрии на бедрах, животе, плечах, подмышечных впадинах, гиперпигментация шеи, локтей, мест трения, повышение АД
Для дифференциальной диагностики гипоталамического ожирения и гиперкортицизма проводят малый дексаметазоновый тест, рентгенологическое исследование черепа и позвоночника.

Лечение ожирение комплексное, направленное на снижение массы тела, включающее диетотерапию и физические методы лечения. Рекомендуется сбалансированная низкокалорийная диета за счет снижения содержания углеводов (100—120 г) и отчасти жиров (80—90 г) преимущественно животных при достаточном содержании белков (120 г), витаминов, минеральных веществ (с учетом энергетических затрат). Используют продукты с высоким содержанием клетчатки, способствующей быстрому насыщению, ускорению прохождения пищи через кишечник. Питание дробное, 5—6 раз в сутки. Применяют разгрузочные дни: белковые (350 г отварного мяса или 500 г творога), фруктовые и т. д. Необходимы активный двигательный режим, систематическая лечебная гимнастика, душ, массаж.

При ожирении IV степени терапией выбора являются хирургические методы лечения. При эндокринных формах ожирения проводят лечение основного заболевания.

Не нашли то, что искали? Воспользуйтесь поиском:

источник