Меню Рубрики

Биосинтез триацилглицеролов в печени и жировой ткани

Известно, что скорость биосинтеза жирных кислот во многом определяется скоростью образования триглицеридов и фосфолипидов, так как свободные жирные кислоты присутствуют в тканях и плазме крови в небольших количествах и в норме не накапливаются.

Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальмитиновой и олеиновой). Путь биосинтеза триглицеридов в тканях протекает через образование α-глице-рофосфата (глицерол-3-фосфата) как промежуточного соединения.

В почках, а также в стенке кишечника, где активность фермента глицеролкиназы высока, глицерин фосфорилируется за счет АТФ с образованием глицерол-3-фосфата:

В жировой ткани и мышцах вследствие очень низкой активности глицеролкиназы образование глицерол-3-фосфата в основном связано с процессами гликолиза и гликогенолиза. Известно, что в процессе гли-колитического распада глюкозы образуется дигидроксиацетонфосфат (см. главу 10). Последний в присутствии цитоплазматической глицерол-3-фосфатдегидрогеназы способен превращаться в глицерол-3-фосфат:

Отмечено, что если содержание глюкозы в жировой ткани понижено (например, при голодании), то образуется лишь незначительное количество глицерол-3-фосфата и освободившиеся в ходе липолиза свободные жирные кислоты не могут быть использованы для ресинтеза триглицеридов, поэтому жирные кислоты покидают жировую ткань. Напротив, активация гликолиза в жировой ткани способствует накоплению в ней триглицеридов, а также входящих в их состав жирных кислот. В печени наблюдаются оба пути образования глицерол-3-фосфата.

Образовавшийся тем или иным путем глицерол-3-фосфат последовательно ацилируется двумя молекулами КоА-производного жирной кислоты (т.е. «активными» формами жирной кислоты – ацил-КоА). В результате образуется фосфатидная кислота (фосфатидат):

Как отмечалось, ацилирование глицерол-3-фосфата протекает последовательно, т.е. в 2 этапа. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата (1-ацилглицерол-3-фосфата, а затем 1-ацилглицерол-3-фосфат-ацилтрансфераза катализирует образование фосфатидата (1,2-диацилглицерол-3-фосфата) .

Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидро-лазой до 1,2-диглицерида (1,2-диацилглицерола):

Затем 1,2-диглицерид ацилируется третьей молекулой ацил-КоА и превращается в триглицерид (триацилглицерол). Эта реакция катализируется диацилглицерол-ацилтрансферазой:

Синтез триглицеридов (триацилглицеролов) в тканях происходит с учетом двух путей образования глицерол-3-фосфата и возможности синтеза триглицеридов в стенке тонкой кишки из β-моноглицеридов, поступающих из полости кишечника в больших количествах после расщепления пищевых жиров. На рис. 11.6 представлены глицерофосфатный, дигидроксиацетон-фосфатный и β-моноглицеридный (моноацилглицероловый) пути синтеза триглицеридов.

Рис. 11.6. Биосинтез триглицеридов (триацилглицеролов).

Установлено, что большинство ферментов, участвующих в биосинтезе триглицеридов, находятся в эндоплазматическом ретикулуме, и только некоторые, например глицерол-3-фосфат-ацилтрансфераза,– в митохондриях.

источник

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацил-глицерол, который ацилируется с образованием триацил-глицерола.

Кроме жирных кислот, поступающих в ади-поциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

Рис. 8-21. Синтез жиров в печени и жировой ткани.

Рис. 8-22. Депонирование жира в адипоцитах в абсорбтивном периоде.После еды при повышении концентрации глюкозы в крови увеличивается секреция инсулина. Инсулин активирует транспорт глюкозы внутрь адипоцитов, действуя на ГЛЮТ-4, синтез ЛП-липазы в адипоцитах и её экспонирование на поверхности стенки капилляров. ЛП-липаза, связанная с эндотелием сосудов, гидролизует жиры в составе ХМ и ЛПОНП. АпоС-II на поверхности ХМ и ЛПОНП активирует ЛП-липазу. Жирные кислоты проникают в адипоцит, а глицерол транспортируется в печень. Так как в адипоцитах нет фермента глицеролкиназы, то свободный глицерол не может использоваться для синтеза ТАГ в этой ткани. Активированные жирные кислоты взаимодействуют с гли-церол-3-фосфатом, образующимся из дигидроксиацетонфосфата, и через фосфатидную кислоту превращаются в ТАГ, которые депонируются в адипоцитах. Сокращения: ТАГ* — триацилглицеролы в составе ХМ и ЛПОНП; ДАФ — дигидроксиацетонфосфат.

95.83.2.240 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

52. Различия синтеза триацилглицеринов (таг) в печени и жировой ткани. Взаимопревращение глицерофосфолипидов. Жировое перерождение печени. Липотропные факторы.

Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования источников энергии. Жиры — наиболее выгодная и основная форма депонирования энергии. Запасы гликогена в организме не превышают 300 г и обеспечивают организм энергией не более суток. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 нед). Синтез жиров активируется в абсорбтивный период и происходит в основном в жировой ткани и печени. Но если жировая ткань — место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани (в первую очередь, в жировую). Синтез жиров в печени и жировой ткани стимулируется инсулином. Мобилизация жира активируется в тех случаях, когда глюкозы недостаточно для обеспечения энергетических потребностей организма: в постабсорбтивный период, при голодании и физической работе под действием гормонов глюкагона, адреналина, соматотропина. Жирные кислоты поступают в кровь и используются тканями как источники энергии.

А. Синтез жиров в жировой ткани и печени

Синтез жиров происходит в абсорбтивный период в печени и жировой ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.

Синтез жиров в печени и жировой ткани идёт через образование промежуточного продукта — фосфатидной кислоты (рис. 8-21).

Предшественник фосфатидной кислоты — глицерол-3-фосфат, образующийся в печени двумя путями:

восстановлением дигидроксиацетонфосфата — промежуточного метаболита гликолиза;

фосфорилированием глицеролкиназой свободного глицерола, поступающего в печень из крови (продукт действия ЛП-липазы на жиры ХМ и ЛПОНП).

В жировой ткани глицеролкиназа отсутствует, и восстановление дигидроксиацетонфосфата — единственный путь образования глицерол-3-фосфата. Следовательно, синтез жиров в жировой ткани может происходить только в абсорбтивный период, когда глюкоза поступает в адипоциты с помощью белка-переносчика глюкозы ГЛЮТ-4, активного только в присутствии инсулина, и распадается по пути гликолиза.

Синтез жиров в жировой ткани

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацилглицерол, который ацилируется с образованием триацилглицерола.

Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

Рис. 8-21. Синтез жиров в печени и жировой ткани.

Синтез ТАГ в печени. Образование ЛПОНП в печени и транспорт жиров в другие ткани

Печень — основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и сек-ретируются в кровь (рис. 8-23).

В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок — апоВ-100. Это очень «длинный» белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

ЛПОНП из печени секретируются в кровь (рис. 8-23), где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛГШП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.

Скорость синтеза жирных кислот и жиров в печени существенно зависит от состава пищи. Если в пище содержится более 10% жиров, то скорость синтеза жиров в печени резко снижается.

Жировое перерождение печени — чрезмерное скопление жира в гепатоцитах; наиболее частая реакция печени на повреждение.

Печени принадлежит ведущая роль в метаболизме липидов. Свободные жирные кислоты (СЖК), всасываемые из кишечника или освобождаемые в кровь из хиломикронов или жировых клеток, составляют небольшой, быстро используемый пул, который обеспечивает почти все энергетические потребности при голодании. СЖК поглощаются печенью, присоединяясь к печеночному пулу СЖК, часть которых синтезируется этим органом. Некоторые СЖК окисляются в печени до СО2 с выделением энергии, но большинство быстро включается в сложные ли-пиды (например, триглицериды, фосфолипиды, гликолипиды и эфиры холестерола). Часть этих сложных липидов входит в состав медленно используемого пула, который включает структурные липиды клеток и их депо. Большая часть триглицеридов становится частью активного пула, соединяясь со специфическими апопротеинами с образованием липопротеинов — формы, в которой триглицериды высвобождаются в плазму (например, липопротеины очень низкой плотности). Печень отвечает также за разрушение липидов (например, липопротеинов низкой плотности и остатков хиломикронов).

При жировой инфильтрации печени макровезикулярного (крупнокапельного) типа, в качестве аккумулируемых липидов обычно выступают триглицериды. Это связано с тем, что печеночные триглицериды имеют самую высокую скорость оборота из всех эфиров жирных кислот печени, а также с отсутствием регуляции потребления жирных кислот печенью по механизму торможения обратной связи. При микровезикулярной (мелкокапельной) жировой дегенерации скапливаются другие липиды (например, СЖК), что наблюдается при некоторых недостаточно изученных состояниях (например, острая жировая инфильтрация печени беременных, синдром Рейе).

Диффузное жировое перерождение печени, часто имеющее зональное распределение, сочетается со многими клиническими ситуациями. У новорожденных оно может встречаться как семейное или идиопатическое состояние; при болезни Вольмана, при муковисцидозе (наиболее вероятно в связи с недостаточностью питания), а также при врожденных нарушениях обмена гликогена, галактозы, тирозина или гомоцистина.

На более поздних этапах жизни это состояние может обнаруживаться при синдроме Рейе, недостаточности дегидрогеназы жирных кислот со средней длиной цепи, нарушении депонирования фитановой кислоты (болезнь Рефсума), болезни Вильсона, гемохроматозе, абеталипопротеинемии, дефиците холестеролэстеразы, передозировке витамина А, ожирении и диабете. Жировая инфильтрация печени может быть результатом неправильного питания и дефицита белков в пище (особенно квашиоркора), а также нарушений аминокислотного равновесия. В некоторых случаях причиной этого состояния служит злоупотребление алкоголем и прием определенных лекарственных веществ (например, кортикостероидов, тетрациклина, вальпроевой кислоты, метотрексата). К такому же результату может привести отравление четыреххлористым углеродом, желтым фосфором.

Диффузное жировое перерождение иногда осложняет операцию наложения тонкокишечного анастомоза, а также беременность.

Очаговое жировое перерождение встречается много реже и хуже распознается. Этот вид поражения печени может быть важен при дифференциальном диагнозе опухолей печени, поскольку проявляется в виде узловых образований, обычно расположенных под капсулой.

Накопление триглицеридов в печени происходит либо в результате их увеличенного синтеза, либо за счет сниженного выделения молекул этого класса из гепатоцитов. Усиленный синтез триглицеридов может быть обусловлен повышением активности триглицеридсинтетазы или увеличением концентрации СЖК в результате усиленного поглощения печенью жирных кислот (мобилизованных из жировой ткани), увеличенного их синтеза из ацетилкоэнзима А или ослабления процессов окисления жирных кислот внутри печени. К уменьшению концентрации СЖК могут привести ослабление гидролиза лизосомальными липазами, уменьшение секреции липопротеинов, а также снижение синтеза других липидов (т.е. не триглицеридов).

Читайте также:  Выживаемость при вторичных метастазах в печень

Механизмы, участвующие в патогенезе жирового перерождения печени, могут действовать изолированно или вместе. По-видимому, развитию жировой инфильтрации печени, вызываемой четыреххлористым углеродом, желтым фосфором, изопропанолом и различными ингибиторами белкового синтеза, способствует увеличенное поглощение печенью СЖК. Усиленный синтез СЖК из ацетилкоэнзима А, по всей вероятности, содействует жировому перерождению, связанному с дефицитом незаменимых жирных кислот, алкогольным токсикозом и лечением фенобарбиталом. Ослабление процессов окисления жирных кислот может способствовать жировой инфильтрации, индуцируемой четыреххлористым углеродом, фосфором, гипоксией и дефицитом некоторых витаминов (никотиновой кислоты, рибофлавина и пантотеновой кислоты).

Основной причиной аккумуляции триглицеридов в печени часто является угнетение продукции и секреции липопротеинов гепатоцитами. Подавление синтеза аполипопротеинов, по-видимому, наиболее важный патогенетический фактор при некоторых типах токсической жировой инфильтрации печени, вызываемой белковым дефицитом (квашиоркор) или нарушением соотношения аминокислот. К жировому перерождению печени может привести токсическое угнетение белкового синтеза за счет подавления синтеза информационной РНК (афлатоксин, токсины бледной поганки, D-галактозамин и диметилнитрозамин), ингибирова-ния синтеза транспортной РНК или ее связывания с рибосомами (пуромицин, тетрациклин), либо за счет торможения трансляции РНК (циклогексимид, эметин).

Жировое перерождение печени может быть результатом аккумулирования других нейтральных липидов. Жир и холестерол (видимые при поляризационной микроскопии как ромбовидные кристаллы с двойным лучепреломлением) обнаруживаются при болезни Вольмана и нарушении депонирования эфиров холестерола. Жировые вакуоли варьируют по размеру от мелких до средних. При болезни Нимана-Пика в гепатоцитах и купферовских клетках накапливается фосфолипид сфингомиелин. Клетки выглядят пенистыми.

При микровезикулярной (мелкокапельной) жировой дегенерации маленькие капельки СЖК, холестерола и фосфолипидов скапливаются в лизосомах. Основной дефект не выяснен, хотя и известно, что патологические и клинические особенности острой жировой дегенерации печени у беременных, при синдроме Рейе, рвотной болезни Ямайки, токсическом воздействии на печень вальпроата натрия, тетрациклина, интоксикации салицилатами у детей, болезни Вольмана, желтой лихорадке и врожденных дефектах в ферментной системе цикла мочевины имеют сходные признаки. Одной из биохимических особенностей, возможно, является нарушение метаболического окисления в митохондриях, что способствует накоплению токсических жирных кислот. К острой жировой инфильтрации печени у беременных может иметь отношение дефицит карнитина в организме.

При значительном жировом отложении печень обычно увеличена, на вид гладкая и бледная. Микроскопически основная структура может быть нормальной. Поскольку чаше всего жировое скопление представлено триглицеридами, жиры обычно выглядят как крупные капельки, которые сливаются и смещают ядро клетки к периферии. В типичном случае при алкогольном жировом перерождении печеночные клетки наполнены жировыми вакуолями, которые часто смещают их ядра к периферии. При микровезикулярном (мелкокапельном) жировом перерождении маленькие капелькиСЖК и другие липиды скапливаются во вторичных лизосомах, которые не сливаются друг с другом. В гепатоцитах выявляется пенистая цитоплазма и центрально расположенное ядро.

При действии гепатотоксинов, влияющих на синтез белков, или при белковой недостаточности питания отмечается тенденция к скоплению липидов в зоне 1. На фоне действия других гепатотоксинов или при дефиците питания в отношении иных, чем аминокислоты, факторов жиры обычно скапливаются в зоне 3. При острой жировой инфильтрации беременных мелкокапельное ожирение является диффузным, но, как правило, не распространяется на гепатоциты, расположенные в зоне 1 непосредственно вокруг портальных трактов. При синдроме Рейе, наоборот, скопление жира преобладает в зоне 1.

источник

Вопрос 49.Биосинтез таг (липогенез). Особенности биосинтеза таг в печени и жировой ткани. Гормональная регуляция. Образование лпонп в печени.

Печень — основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком Эр гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идет через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и секретируются в кровь.В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок апоВ-100. Это очень «длинный» белок , содержащий 11536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина. ЛПОНП из печени секретируется в кровь, где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛППП , а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров. Скорость синтеза ЖК и жиров в печени существенно зависит от состава пищи. Если в пище содержится белее 10% жиров, то скорость синтеза жиров в печени резко снижается.

Гормональная регуляция синтеза жиров. Какой процесс будет преобладать в организме – синтез жиров или их распад зависит от поступления пищи и физической активности В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии – липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз. В абсорбтивный период при увеличении соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез ЛП-липазы в адипоцитах и осуществляется ее экспонирование на поверхность эндотелия , следовательно в этот период увеличивается поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы – ГЛЮТ-4. Поступление глюкозы в адипоциты и гликолиз также активируется. В результате образуются все необходимые компоненты для синтеза жиров: глицерол-3-фосфат и активные формы жирных кислот. В печени инсулин, действуя через различные механизмы, активирует ферменты путем дефосфорилирования и индуцирует их синтез. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей в жиры. Это – регуляторные ферменты гликолиза, пируватдегидрогеназный комплекс и ферменты, участвующие в синтезе ЖК из ацетил-КоА. Результат действия инсулина на обмен углеводов и жиров в печени – увеличение синтеза жиров и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛП-липазы обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе ТАГ.

источник

Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7–8 недель). Синтез ТАГ происходит в абсорбтивный период в печени и жировой ткани. Но если жировая ткань – только место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.

Печень – основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком эндоплазматическом ретикулюме гепатоцитов жирные кислоты активируются и сразу же используются для синтеза ТАГ, взаимодействуя с глицерол-3-фосфатом. Синтезированные жиры упаковываются в ЛПОНП и секретируются в кровь.

В жировой ткани для синтеза ТАГ используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП. Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом. Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идет и синтез жирных кислот из продуктов распада глюкозы. Молекулы ТАГ в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул.

В абсорбтивный период при увеличении соотношения инсулин/глюкагон активируется синтез ТАГ в печени. В жировой ткани индуцируется синтез липопротенлипазы (ЛПЛ), т.е в этот период активируется поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы – ГЛЮТ-4, что ведет к увеличению поступления глюкозы в адипоциты и активации там гликолиза. В результате образуются необходимые для синтеза жиров глицерол-3-фосфат и активированные жирные кислоты. В печени в результате действия инсулина увеличивается количество и активность регуляторных ферментов гликолиза, пируватдегидрогеназного комплекса, а также ферментов, участвующих в синтезе жирных кислот из ацетил-КоА. Итогом этих изменений является увеличение синтеза ТАГ и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛПЛ обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе ТАГ.

Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе. Процесс осуществляется под действием гормончувствительной ТАГ-липазы. Этот фермент отщепляет одну жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты – в комплексе с белком плазмы альбумином.

Мобилизация депонированных ТАГ стимулируется глюкагоном и адреналином, и, но в гораздо меньшей степени, соматотропным гормоном и кортизолом. В постабсорбтивный период и при голодании глюкагон, действуя на адипоциты через аденилатциклазную систему, активирует гормончувствительную липазу, что инициирует липолиз и выделение жирных кислот и глицерола в кровь. При физической активности увеличивается секреция адреналина, который также через аденилатциклазную систему активирует липолиз. В настоящее время предполагается, что действие адреналина двояко: при низких концентрациях в крови преобладает его антилиполитическое действие через α2-рецепторы, а при высокой – преобладает липолитическое действие через β-рецепторы.

В результате мобилизации ТАГ концентрация жирных кислот в крови увеличивается приблизительно в 2 раза, но они достаточно быстро утилизируются. Для мышц, сердца, почек, печени при голодании или физической работе жирные кислоты становятся важным источником энергии. Печень перерабатывает часть жирных кислот в кетоновые тела, используемые мозгом, нервной и некоторыми другими тканями как источники энергии. Когда постабсорбтивный период сменяется абсорбтивным, инсулин через промежуточные механизмы подавляет активность гормончувствительной липазы и распад жиров останавливается.

Состояние, когда масса тела на 20% превышает идеальную для данного индивидуума, считают ожирением. Оно развивается, когда в жировой ткани преобладают процессы липогенеза. Образование адипоцитов происходит во внутриутробном состоянии, начиная с последнего триместра беременности, и заканчивается в препубертатный период. После этого жировые клетки могут увеличиваться в размерах при ожирении или уменьшаться при похудании, но их количество не изменяется в течение жизни. Одна из классификаций ожирения основана на размерах и количестве адипоцитов. При повышении общего числа этих клеток говорят о гиперпластическом ожирении (развивающемся в младенческом возрасте, наследственном); увеличесние размеров адипоцитов ведет гипертрофическому ожирению. Согласно другой классификации, выделяют первичное и вторичное ожирение.

Первичное ожирение развивается в результате алиментарного дисбаланса – избыточной калорийности питания по сравнению с расходами энергии. Причинами этого в 80% случаев являются генетические нарушения, далее в списке причин следуют состав и количество потребляемой пищи, уровень физической активности и психологические факторы. Метаболические различия между тучными и худыми людьми до настоящего времени не могут быть определены однозначно. Среди причин, объясняющих эти различия, называют то, что у людей, склонных к ожирению, более эффективный метаболизм, разное соотношение аэробного и анаэробного гликолиза, различия в активности Na + /K + -АТФазы. Установлено, что у человека и животных есть ген ожирения – obese gene. Продуктом экспрессии этого гена является белок лептин, который синтезируется и секретируется адипоцитами и взаимодействует с рецепторами гипоталамуса. В результате его действия снижается секреция нейропептида Y, стимулирующего потребление пищи. У большей части больных ожирением имеется генетический дефект рецепторов лептина в гипоталамусе, у некоторых дефектен сам ген. Но в итоге секреция нейропептида Y продолжается, что ведет к увеличению аппетита и, соответственно, к увеличению массы тела.

Вторичное ожирение – ожирение, развивающееся в результате какого-либо заболевания, чаще всего эндокринного. Например, к развитию ожирения приводят гипотиреоз, синдром Иценко-Кушинга и гипогонадизм.

Высвобождающиеся при липолизе жирные кислоты поступают в кровоток и транспортируются в связанном с сывороточными альбуминами состоянии. Поступление СЖК сопровождается появлением в плазме также и глицерола. Глицерол может участвовать в глюконеогенезе или включаться в гликолитический путь с предварительным образованием глицерол-3-фосфата.

После того, как жирные кислоты поступают в клетку, они активируются путем образования кофермент А-производных:

Реакцию катализируют ферменты ацил-КоА-синтетазы. Они находятся как в цитозоле, так и в матриксе митохондрий и отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с длиной цепи от 2 до 4 атомов углерода могут проникать в матрикс митохондрий путем диффузии. Активация таких кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека, активируются ацил-КоА-синтетазами, расположенными на внешней мембране митохондрий.

Читайте также:  Какие препараты принимать при больной печени

β-Окисление жирных кислот происходит в матриксе митохондрий, поэтому после активации эти субстраты должны транспортироваться внутрь митохондрий. Этот процесс осуществляется с помощью карнитина, который поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина.

В наружной мембране митохондрий (Рис. 20.1) находится фермент карнитинацилтрансфераза I, катализирующий реакцию с образованием ацилкарнитина. Образовавшийся ацил-карнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитин-транслоказы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления. Свободный карнитин возвращается в межмембранное пространство той же транслоказой.

Рис. 20.1. Перенос длинноцепочечных жирных кислот через мембраны митохондрий.

β-Окисление жирных кислот – специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦТД, а ацетил-КоА окисляется в цикле трикарбоновых кислот, также поставляющем водород для ЦТД. Поэтому β-окисление жирных кислот является важнейшим метаболическим путем, обеспечивающим синтез АТФ в дыхательной цепи.

Продуктами каждого цикла β-окисления являются ФАДН2, НАДН и ацетил-КоА. Остаток кислоты, который входит в каждый последующий цикл, короче на 2 углеродных атома. В последнем цикле, когда остаётся жирная кислота из 4 атомов углерода, образуются сразу 2 молекулы ацетил-КоА. Суммарное уравнение β-окисления пальмитоил-КоА может быть представлено так:

Энергетический выход в этом случае составляет 131 молекулу АТФ (21 АТФ образуется при окислении каждой из 7 молекул НАДН в ЦТД, 14 – при окислении каждой из 7 молекул ФАДН2 в ЦТД, синтез 96 молекул АТФ обеспечивается окислением 8 молекул ацетил-КоА в ЦТК). С учетом расхода 1 молекулы АТФ на активцию кислоты, чистый энергетический выход окисления пальмитата составляет 130 АТФ. Окисление жирных кислот – важный источник энергии в тканях с высокой активностью ЦТК и дыхательной цепи (скелетные и сердечная мышцы, почки). Эритроциты, в которых отсутствуют митохондрии, не могут окислять жирные кислоты. Эти соединения не служат источником энергии для головного мозга, так как жирные кислоты не проходят через гематоэнцефалический барьер.

Скорость процесса регулируется потребностью клетки в энергии (соотношениями АТФ/АДФ, НАДН/НАД + ). Скорость β-окисления зависит и от доступности субстрата, т.е. от количества жирных кислот, поступающих в митохондрии. Концентрация СЖК в крови повышается при активации липолиза. В этих условиях жирные кислоты становятся преимущественным источником энергии для мышц и печени, так как в результате β-окисления образуются НАДН и ацетил-КоА, ингибирующие пируватдегидрогеназный комплекс. Таким образом, использование жирных кислот как основного источника энергии в мышечной ткани и печени сберегает глюкозу для нервной ткани и эритроцитов.

Скорость β-окисления зависит также от активности карнитинацилтрансферазы I. В печени этот фермент ингибируется малонил-КоА, образующимся при биосинтезе жирных кислот. То есть малонил-КоА ингибирует деградацию жирных кислот, чем способствует их использованию для синтеза жира.

Другие типы окисления жирных кислот. β-Окисление является основным путем катаболизма жирных кислот, но помимо него встречаются α-окисление и ω–окисление. α-Окисление представляет собой последовательное отщепление одноуглеродных фрагментов, выделяющихся в виде СО2 от карбоксильного конца молекулы. Такому типу окисления подвергаются жирные кислоты с цепью более 20 углеродных атомов (характерны для липидов нервной ткани), а также жирные кислоты с разветвленной углеродной цепью (поступают с пищей). ω–Окисление жирных кислот в норме весьма незначительно, происходит оно в микросомах печени. Первоначальная стадия катализируется монооксигеназой, которая тебует наличия НАДФН, О2 и цитохрома Р450. Группа -СН3 при этом превращается в -СН2ОН, затем окисляется до –СООН. Образовавшаяся дикарбоновая кислота может быть укорочена с любого конца путем реакций β-окисления.

Окисление ненасыщенных жирных кислот идет обычным путем, до тех пор, пока двойная связь не окажется между третьим и четвертым атомами углерода. После этого фермент еноил-КоА-изомераза перемещает двойную связь из положения 3–4 в положение 2–3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Жирные кислоты с нечетным числом углеродных атомов на конечном этапе β-окисления образуют ацетил-КоА и пропионил-КоА. Трехуглеродный фрагмент в ходе трех реакций превращается в сукцинил-КоА – метаболит ЦТК.

Ацетил-КоА, образующийся при β-окислении жирных кислот, расщеплении кетогенных аминокислот и окислительном декарбоксилировании пирувата служит исходным субстратом для ряда важнейших метаболических путей:

2. образование кетоновых тел

4. биосинтез жирных кислот.

При голодании, длительной физической нагрузке и в случаях, когда клетки не получают достаточного количества глюкозы (желудочно-кишечные расстройства у детей, диета с низким содержанием углеводов, почечная глюкозурия, сахарный диабет), в жировой ткани активируется распад жиров. Жирные кислоты поступают в печень в большем количестве, чем в норме, увеличивается скорость b-окисления. Активность ЦТК в этих условиях снижена, так как ЩУК используется для глюконеогенеза. В результате скорость образования ацетил-КоА превышает способность ЦТК окислять его. Ацетил-КоА накапливается в митохондриях печени и используется для синтеза ацетоацетата. Это вещество может выделяться в кровь или превращаться в печени в другое кетоновое тело – b-гидроксибутират путем восстановления. В клетках печени при активном b-окислении создается высокая концентрация НАДН. Это способствует превращению большей части ацетоацетата в b-гидроксибутират, поэтому основное кетоновое тело крови – именно b-гидроксибутират. При высокой концентрации ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон. Ацетон не утилизируется тканями, но выделяется с выдыхаемым воздухом и мочой. Таким путем организм удаляет избыточное количество кетоновых тел, которые не успевают окисляться, и вызывают ацидоз, так как являются кислотами. Скорость синтеза кетоновых тел зависит от активности 3-гидрокси-3-метилглутарил-КоА-синтазы (ГМГ-КоА-синтазы). Это индуцируемый фермент, его синтез увеличивается при повышении концентрации жирных кислот в крови. ГМГ-КоА-синтаза ингибируется высокими концентрациями свободного КоА. В норме образуется небольшое количество кетоновых тел (их содержание в крови составляет 10–30 мг/л, т.е. до 0,2 ммоль/л). В печени ацетоацетат не может окисляться, поэтому с током крови он попадает в скелетные мышцы, сердце, мозг, которые способны превращать ацетоуксусную кислоту вновь в ацетил-КоА.

Содержание кетоновых тел в крови увеличивается тогда, когда основным источником энергии для организма служат жирные кислоты – при длительной мышечной работе, голодании, сахарном диабете.

Рис. 20.2. Образование, утилизация и выведение кетоновых тел (главный путь показан непрерывными стрелками)

Увеличение концентрации кетоновых тел в крови называют кетонемией, выделение кетоновых тел с мочой – кетонурией. Накопление кетоновых тел в организме приводит в кетоацидозу: уменьшению щелочного резерва, а в тяжелых случаях – к сдвигу рН, так как b-гидроксибутират и ацетоацетат являются водорастворимыми органическими кислотами, способными к диссоциации. Ацидоз достигает опасных величин при сахарном диабете. Содержание кетоновых тел в крови при этом заболевании увеличивается в 100 и более раз, достигая концентрации 4–5 г/л. Тяжелая форма ацидоза – одна из основных причин смерти при сахарном диабете.

Синтез жирных кислот происходит в основном в печени, в меньшей степени – в жировой ткани и лактирующей молочной железе. Гликолиз и последующее окислительное декарбоксилирование пирувата способствуют увеличению концентрации ацетил-КоА в матриксе митохондрий. Синтез же жирных кислот происходит в цитозоле, куда и должен быть транспортирован субстрат. Для этого в матриксе митохондрий ацетил-КоА конденсируется со ЩУК с образованием цитрата. Затем транслоказа переносит цитрат в цитоплазму. Это происходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидрогеназа и α-кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН и АТФ. Такая ситуация создается в абсорбтивном периоде, когда клетка печени получает достаточное количество источников энергии. В цитоплазме цитрат расщепляется до ЩУК и ацетил-КоА. Последний служит исходным субстратом для синтеза жирных кислот, а ЩУК под действием малатдегидрогеназы превращается в малат, который при участии малик-фермента образует пируват. Пируват транспортируется обратно в матрикс митохондрий.

Первая реакция синтеза жирных кислот – превращение ацетил-КоА в малонил-КоА, осуществляемое ацетил-КоА-карбоксилазой, определяет скорость всех последующих реакций синтеза жирных кислот.

Далее синтез жирных кислот продолжается на мультиферментном комплексе – синтазе жирных кислот. Этот фермент состоит из 2 идентичных протомеров, каждый из которых имеет доменное строение и, соответственно, 7 центров, обладающих разными каталитическими активностями (ацетилтрансацилаза, малонилтрансацилаза кетоацилсинтаза, кетоацилредуктаза, гидратаза, еноил-редуктаза, тиоэстераза) и ацилпереносящий белок (АПБ). АПБ не является ферментом, его функция связана только с переносом ацильных радикалов. В процессе синтеза важную роль играют SH-группы. Одна из них принадлежит 4-фосфопантетеину, входящему в состав АПБ, вторая – цистеину кетоацилсинтазы. Протомеры синтазы жирных кислот расположены «голова к хвосту». Несмотря на то, что каждый мономер содержит все активные центры, функционально активен комплекс из двух протомеров. Поэтому реально синтезируются одновременно 2 жирных кислоты (в схемах для упрощения изображают синтез только одной молекулы).

Этот комплекс последовательно удлиняет радикал жирной кислоты на 2 углеродных атома, донором которых служит малонил-КоА. Циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту. В каждом цикле биосинтеза пальмитиновой кислоты проходят 2 реакции восстановления, донором водорода в которых служит НАДФН.

Регуляторный фермент синтеза жирных кислот – ацетил-КоА-карбоксилаза.

Его активность регулируется двумя способами.

1. Ассоциация/диссоциация комплексов субъединиц. В неактивной форме ацетил-КоА-карбоксилаза представляет собой отдельные комплексы, каждый из которых состоит из 4 субъединиц. Активатор фермента – цитрат – стимулирует объединение комплексов, ингибитор – пальмитоил-КоА – вызывает их диссоциацию.

2. Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. В постабсорбтивном состоянии или при физической работе глюкагон или адреналин через аденилатциклазную систему активируют протеинкиназу А и стимулируют фосфорилирование субъединиц ацетил-КоА-карбоксилазы. Фосфорилированный фермент неактивен, синтез жирных кислот останавливается. В абсорбтивный период инсулин активирует фосфатазу, и ацетил-КоА-карбоксилаза переходит в дефосфорилированное состояние. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным.

Ещё одним способом усиления синтеза жирных кислот является индукция синтеза ферментов этого метаболического пути. Такое происходит при длительном потреблении богатой углеводами и бедной жирами пищи, когда инсулин стимулирует индукцию синтеза ацетил-КоА-карбоксилазы, синтазы жирных кислот, цитратлиазы и изоцитратдегидрогеназы.

Из пальмитиновой кислоты могут синтезироваться более длинные, а также ненасыщенные жирные кислоты.

Удлинение пальмитиновой кислоты может происходить:

1. в митохондриях за счет присоединения ацетил-КоА по пути, обратному b-окислению, с использованием НАДФН, а не ФАДН2;

2. в микросомах за счет малонил-КоА и НАДФН. Процесс напоминает функционирование синтазного комплекса в цитозоле, только промежуточные продукты не связываются с АПБ.

Введение двойных связей в структуру жирных кислот происходит также в микросомах с помощью оксидаз, при этом используются НАДФН и О2.

источник

Основные количества синтезируемых или усваиваемых организмом жирных кислот имеют две возможные судьбы: включение в триацилглицерины для сохранения метаболической энергии или образование фосфолипидных компонентов мембран. Выбор между этими альтернативными путями зависит от текущих потребностей организма. Во время быстрого роста синтез новых мембран требует производства мембранных фосфолипидов; когда организм получает обильное питание, но активно не растет, он направляет большую часть своих жирных кислот в жировые депо (сохраняемые жиры). Оба пути начинаются с одного и того же — образования эфиров глицерина и жирных кислот. В следующем разделе мы рассмотрим ход образования триацилглицеринов и его регуляцию, и образование глицерин- 3-фосфата в процессе глицеронеогенеза.

Триацилглицерины и глицерофосфолипиды синтезируются из одних и тех же предшественников

Животные могут синтезировать и сохранять огромные количества триацилглицеринов для последующего использования в качестве топлива (см. доп. 17-1). В печени и мышцах человека может накапливаться только несколько сотен граммов гликогена, и этого едва хватает для удовлетворения энергетических потребностей организма в течение 12 часов. В то же время в теле мужчины среднего телосложения массой

70 кг имеется около 15 кг триацилглицеринов, и этого достаточно для удовлетворения основных энергетических нужд организма в течение 12 недель (см. табл. 23-5). В триацилглицеринах заключено более 38 кДж/ r энергии, чем в других питательных веществах. Всякий раз, когда происходит всасывание углеводов в количестве, превышающем способность организма депонировать гликоген, их избыток превращается в триацилглицерины и хранится в жировой ткани. Растения также производят триацилглицерины, богатые энергией топливные молекулы, и накапливают их главным образом в сочных плодах, орехах и семенах.

Читайте также:  Опасно ли есть печень с кровью

В животных тканях у триацилглицеринов и глицерофосфолипидов, например, фосфатидил-этаноламина, два общих предшественника (ацил- СоА жирных кислот и L -глицерин-З-фосфат); они образуются в нескольких реакциях биосинтеза. Основные количества глицерин-3-фосфата получаются из промежуточного продукта гликолиза дигидроксиацетонфосфата под действием связанной с NAD глицерин-3-фосфат- дегидрогеназы; в печени и почках образуются небольшие количества глицерин-3-фосфата также из глицерина под действием глицеринкиназы (рис. 21-17). Другие предшественники триацилглицеринов — это ацил-СоА, образующиеся из жирных кислот под действием ацил-СоА- синтаз, тех же ферментов, которые отвечают за активацию жирных кислот при β-окислении (см. рис. 17-5).

Первая стадия в биосинтезе триацлглицеринов — ацилирование двух свободных гидроксильных групп L -глицерин-3-фосфата двумя молекулами ацил-СоА с образованием диацилглицерин-3-фосфата, который чаще называют фосфатидной кислотой или фосфатидатом (рис. 21-17). Фосфатидная кислота присутствует в клетках только в следовых количествах, но является центральным интермедиатом в биосинтезе липидов — она может превращаться либо в триацилглицерин, либо в глицерофосфолипид. На пути образования триацилглицеринов фосфатидная кислота гидролизуется фосфатазой фосфатидной кислоты с образованием 1,2-диацилглицерина (рис. 21-18). Затем диацилглицерины путем трансэтерификации третьей молекулой ацил-СоА превращаются в триацилглицерины.

Рис. 21-17. Биосинтез фосфатидной кислоты. Ацил жирной кислоты активируется путем образования ацил-СоА, затем переносится к сложноэфирной связи в L -глицеринтрифосфате, образованном по одному из двух представленных здесь путей. Фосфатидная кислота изображена здесь в правильной конфигурации при С-2 молекулы глицерина.

Рис. 21-18. Фосфатидная кислота в биосинтезе липидов. Фосфатидная кислота — предшественник и триацилглицеринов, и глицерофосфолипидов. Механизмы присоединения полярной «головки» при синтезе фосфолипидов описываются далее.

Биосинтез триацилглицеринов у животных регулируется гормонами

У человека количество жира в организме остается относительно постоянным в течение длительных периодов времени, хотя возможны незначительные кратковременные изменения из-за потребления пищи разной калорийности. Углеводороды, жиры или белки, поглощенные в количестве, превышающем энергетические потребности, сохраняются в форме триацилглицеринов. Этот запас энергии помогает организму выдержать периоды голодания.

Пути биосинтеза и деградации триацилглицеринов зависят от метаболических ресурсов и потребностей организма в данное время. Скорость биосинтеза триацилглицеринов очень сильно меняется при действии некоторых гормонов. Например, инсулин облегчает превращение углеводов в триацилглицерины (рис. 21-19). Больные с тяжелыми формами сахарного диабета из-за недостатка секреции инсулина или отсутствия его действия не только не способны должным образом использовать глюкозу, поступающую с пищей, но не могут также синтезировать жирные кислоты из углеводов или аминокислот. В отсутствие лечения у больных диабетом наблюдается увеличение скорости окисления жиров и образования кетоновых тел (гл. 17), а, следовательно, потеря массы тела. ■

Рис. 21-19. Регуляция синтеза триацилглицеринов инсулином. Инсулин стимулирует превращение углеводов и белков пищи в жиры. У людей, страдающих сахарным диабетом, не хватает инсулина, и, если болезнь не лечить, синтез жирных кислот уменьшается и вместо этого ацетил-СоА из катаболизма углеводов и белков идет на синтез кетоновых тел. Люди с сильным кетозом пахнут ацетоном, поэтому их иногда путают с пьяными (с. 605).

Баланс между биосинтезом и деградацией триацилглицеринов обусловлен тем, что примерно 75% всех жирных кислот, высвобождаемых при липолизе, снова этерифицируются, образуя триацилглицерины, а не используются в качестве топлива. Такое соотношение сохраняется даже в условиях истощения, когда энергетический метаболизм переключается с использования углеводов на окисление жирных кислот. Такое повторное использование жирных кислот частично протекает в жировой ткани, а трансэтерификация происходит перед выходом в кровяное русло. Частично это происходит в цикле, охватывающем весь организм, — свободные жирные кислоты транспортируются в печень, превращаются там в триацилглицерины, снова экспортируются в кровь (транспорт липидов в крови обсуждается в разд. 21.4) и после высвобождения из триацилглицеринов с помощью внеклеточной липопротеинлипазы опять включается в жировую ткань (рис. 21-20; см. также рис. 17-1). Поток веществ триацилглицеринового цикла между жировой тканью и печенью может быть не очень значительным в случае, когда доступно другое топливо и высвобождение жирных кислот из жировой ткани ограничено. Но, как отмечалось выше, относительное количество высвобождаемых жирных кислот, которые трансэтерифицируются, остается постоянными и при любых условиях метаболизма составляет примерно 75%. Следовательно, уровень свободных жирных кислот в крови отражает как скорость высвобождения жирных кислот, так и баланс между синтезом и распадом триацилглицеринов в жировой ткани и в печени.

Рис. 21-20. Триацилглицериновый цикл. У млекопитающих при истощении организма молекулы триацилглицерина разрушаются и ресинтезируются в триацилглицериновом цикле. Некоторые жирные кислоты, высвобождаемые путем липолиза триацилглицеринов жировой ткани, попадают в кровоток, и их остатки используются в ресинтезе триацилглицеринов. Жирные кислоты крови служат для получения энергии (например, в мышцах) или же поступают в печень для синтеза триацилглицеринов. Триацилглицерины, образующиеся в печени, транспортируются кровью обратно в жировую ткань, где под действием внеклеточной липопротеин-липазы высвобождаются жирные кислоты, которые в адипоцитах реэтерифицируются с образованием триацилглицеринов.

Когда требуется мобилизация жирных кислот на энергетические потребности, гормоны глюкагон и адреналин стимулируют их высвобождение из жировой ткани (см. рис. 17-3, 17-12). Одновременно эти гормональные сигналы уменьшают скорость гликолиза и увеличивают скорость глюконеогенеза в печени (производя глюкозу для мозга; подробно об этом см. в гл. 23). Высвобождаемые жирные кислоты захватываются разными тканями, в том числе мышцами, где они окисляются, производя энергию. Основные количества жирных кислот, поглощенных печенью, не окисляются, а повторно используются с образованием триацилглицеринов и возвращаются в жировую ткань.

Зачем нужен этот явно холостой триацилглицериновый цикл (холостые циклы обсуждаются в гл. 15), не совсем понятно. Однако по мере того, как мы больше узнаем об обеспечении триацилглицеринового цикла за счет метаболизма и о координированной регуляции в двух разных органах, открываются и возможности его дальнейшего изучения. Например, триацилглицериновый цикл (в котором жирные кислоты скорее всего вновь превращаются в триацилглицерины, а окисляются как топливные молекулы) может при голодании дополнительно производить энергетический резерв в кровяном русле, который при чрезвычайных обстоятельствах можно гораздо быстрее мобилизовать, а не сохранять в виде триацилглицерина.

Постоянный кругооборот триацилглицеринов в жировой ткани при истощении вызывает еще один вопрос. Что служит источником глицерин-3-фосфата, необходимого для этого процесса? Как отмечалось выше, гликолиз в этих условиях подавляется действием глюкагона или адреналина, поэтому дигидроксиацетонфосфат мало доступен, а глицерин, высвобождаемый в процессе липолиза, не может прямо превращаться в глицерин-3-фосфат в жировой ткани, так как там недостаточно глицеринкиназы (рис. 21-17). Как же производится достаточное количество глицерин-3-фосфата? Ответ кроется в метаболическом пути, открытом более чем три десятилетия тому назад. До недавних пор этому уделялось мало внимания. Этот путь близко связан с триацилглицериновым циклом и, в более широком смысле, с балансом между метаболизмом жирных кислот и метаболизмом углеводов.

Жировая ткань генерирует глицерин-3-фосфат путем глицеронеогенеза

Глицеронеогенез — укороченный путь глюко- неогенеза от пирувата до дигидроксиацетон- фосфата (см. рис. 14-16), после чего происходит превращение дигидроксиацетонфосфата в глицерин-3-фосфат с помощью цитозольной связанной с NAD глицерин-3-фосфатдегидрогеназы (рис. 21-21). Глицерин-3-фосфат используется далее в синтезе триацилглицеринов. Глицеронеогенез был открыт в 1960-х гг. Леа Решеф, Ричардом Хансоном и Джоном Баллардом, а также одновременно Элеазаром Шафриром и его сотрудниками, которые были заинтригованы присутствием двух ферментов глюконеогенеза пируваткарбоксилазы и фосфоенолпируват (ФЕП)-карбоксикиназы в жировой ткани, где глюкоза не синтезируется. После длительного периода невнимания к столь странному факту интерес к этому метаболическому пути возобновился, при это удалось выявить связь между глицеронеогенезом и поздним диабетом II типа.

Рис. 21-21. Глицеронеогенез. Этот метаболический путь является по существу сокращенной версией глюконеогенеза от пирувата до дигидроксиацетонфосфата, после чего происходит превращение последнего в глицерин-3-фосфат, который используется для синтеза триацилглицеринов.

У глицеронеогенеза множество функций. В жировой ткани глицеронеогенез, сопряженный с переэтерификацией жирных кислот, контролирует скорость высвобождения жирных кислот в кровь. В буром жире этот метаболический путь может регулировать скорость, с которой жирные кислоты доставляются в митохондрии для использования в термогенезе (см. рис. 19-34). А у голодающих людей глицеронеогенез в одной только печени обеспечивает синтез глицерин-3-фосфата в количестве, достаточном для того, чтобы до 65% жирных кислот заново этерифицировались с образованием триацилглицеринов.

Прохождение по триацилглицериновому циклу между печенью и жировой тканью контролируется в большой степени ФЕП-карбоксилазой, которая ограничивает скорости и глюконеогенеза, и глицеронеогенеза. Глюкокортикоидные гормоны, такие как кортизол (природный стероид, происходящий от холестерина; см. рис. 21-45) и дексаметазон (синтетический глюкокортикоид), регулируют уровни ФЕП-карбоксикиназы в печени и поэтому и в жировой ткани. Действуя через глюкокортикоидный рецептор, эти стероидные гормоны увеличивают экспрессию гена, кодирующего ФЕП-карбоксикиназу в печени, усиливая тем самым глюконеогенез и глицеронеогенез (рис. 21-22).

Стимуляция глицеронеогенеза приводит к увеличению синтеза триацилглицеринов в печени и их поступления в кровь. В то же самое время глюкокортикоиды подавляют экспрессию гена, кодирующего ФЕП-карбоксикиназу в жировой ткани. Это приводит к ослаблению глицеронеогенеза в жировой ткани; в результате уменьшается повторное использование жирных кислот, и в кровь высвобождается большее их количество. Таким образом, глицеронеогенез согласованно регулируется в печени и жировой ткани, что влияет на липидный метаболизм противоположным образом: более низкая скорость глицеронеогенеза в жировой ткани ведет к большему высвобождению жирных кислот (не допуская их повторного использования), в то время как повышенная скорость этого процесса в печени вызывает более производительный их синтез и экспорт триацилглицеринов. Суммарный результат заключается в увеличении потока через триацилглицериновый цикл. Когда действие глюкокортикоидов снимается, поток через цикл уменьшается по мере того, как экспрессия ФЕП-карбоксикиназы увеличивается в жировой ткани и уменьшается в печени.

Рис. 21-22. Регуляция глицеронеогенеза. а — глюкокортикоидные гормоны стимулируют глицеронеогенез и глюконеогенез в печени, в то же время подавляя глицеронеогенез в жировой ткани (посредством реципрокной регуляции экспрессии гена ФЕП-карбоксикиназы (РЕРСК) в двух тканях); в результате увеличивается поток через триацилглицериновый цикл. Глицерин, образовавшийся при распаде триацилглицеринов в жировой ткани, выделяется в кровь и транспортируется в печень, где он с помощью глицеринкиназы превращается главным образом в глюкозу, хотя частично конвертируется в глицерин-3-фосфат. б — класс лекарств, называемых тиазолидиндионами, применяется в настоящее время для лечения диабета II типа. При этом заболевании высокий уровень жирных кислот в крови препятствует усвоению глюкозы в мышцах и вызывает резистентность к инсулину. Тиазолидиндионы активируют ядерные рецепторы (с помощью пролифератора пероксисомы — y (РРАК y )), что индуцирует активность ФЕП-карбоксикиназы. Терапевтический эффект обусловлен тем, что тиазолидиндионы увеличивают скорость глицеронеогенеза, усиливая тем самым повторный синтез триацилглицеринов в жировой ткани и уменьшая количество свободных жирных кислот в крови.

Тиазолидиндионы применяют при диабете II типа для увеличения глицеронеогенеза

Недавно привлеченное к глицеронеогене- зу внимание отчасти обусловлено связью между этим метаболическим путем и диабетом. Высокий уровень свободных жирных кислот в крови мешает усвоению глюкозы в мышцах и вызывает индиферентность к инсулину, что приводит к диабету II типа. Оказалось, что лекарства нового поколениятиазолидиндионы понижают уровень жирных кислот в крови и увеличивают чувствительность к инсулину. Тиазолидиндионы связываются с ядерными рецепторами этого гормона (активируется пролифератором пероксисомы — y (РРА Ry )) и активируют его, индуцируя ФЕП-карбоксикиназу в жировой ткани (рис. 21-22); повышенная активность ФЕП- карбоксикиназы затем приводит к усиленному синтезу предшественников глицеронеогенеза. Таким образом, терапевтический эффект тиазолидиндионов, по крайней мере частично, обусловлен увеличением глицеронеогенеза, что в свою очередь усиливает повторный синтез триацил-глицеринов в жировой ткани и уменьшает высвобождение свободных жирных кислот из жировой ткани в кровь. Преимущества приема одного из таких препаратов розиглитазона (Авандия), к сожалению, несколько уменьшаются в связи с повышением риска инфаркта миокарда. Причины такого побочного эффекта пока неясны, и изучение действия препарата продолжается. ■

Краткое содержание раздела 21.2 Биосинтез триацилглицеринов

■ Триацилглицерины образуются при взаимодействии двух молекул ацил-СоА жирных кислот с глицерин-3-фосфатом с выделением фосфатидной кислоты; этот продукт дефосфорилируется, давая диацилглицерин, который затем ацилируется третьей молекулой ацил- СоА с образованием триацилглицеринов.

■ Синтез и деградация триацилглицеринов регулируются гормонами.

■ Путем мобилизации и повторного использования триацилглицеринов возникает триацилглицериновый цикл. Триацилглицерины вновь синтезируются из свободных жирных кислот и глицерин-3-фосфата даже в состоянии истощения организма. Дигидроксиаце- тонфосфат — предшественник глицерин-3- фосфата — производится из пирувата путем глицеронеогенеза.

источник