Дегидрирование субстратов и окисление водорода (образование воды) как источник энергии для синтеза АТФ
АТФ — чрезвычайно важная молекула клетки. Она непрерывно синтезируется и используется. Энергия для синтеза АТФ поступает от субстратов, содержащих высокоэнергетические электроны в ходе их дегидрирования. Электроны высоких энергий извлекаются из субстратов в ходе гликолиза (в цитозоле), при преобразовании пирувата в ацетил-КоА и в цикле трикарбоновых кислот (в митохондриаль-ном матриксе). Молекулы НАДН и ФАДН2 переносят эти электроны в дыхательную цепь, локализованную в во внутренней митохондриальной мембране.
Дыхательная цепь состоит из переносчиков электронов, сгруппированных в 4 ферментативных комплекса, и ферментов. Особенность переносчиков электронов дыхательной цепи в том, что каждый способен принимать электроны от предыдущего и отдавать последующему. Прием и передача электронов молекулами переносчиков происходит упорядоченно в соответствии с их электрохимическими потенциалами. Под электрохимическим потенциалом молекулы понимают её способность вступать во взаимодействие с электроном. Т.е. присоединять электрон и при этом восстанавливаться и отдавать его и при этом окисляться. Электрохимический потенциал молекулы это её способность участвовать в окислительно-восстановительных реакциях. В начало дыхательной цепи электроны вносит НАДН — он обладает самым низким электрохимическим потенциалам. В конце дыхательной цепи находиться кислород — его электрохимический потенциал самый высокий. Электроны, перемещаясь по дыхательной цепи в сторону кислорода, совершают полезную работу по переносу протонов из митохондриалыуого матрикса в межмембранное пространство (рис. 13). На восходящих участках тра-
ектории каждый электрон перемещается вместе с протоном, т.е. в форме атома водорода, затем отделяется от протона на внешней стороне мембраны и продолжает движение внутри мембраны. В межмембранном пространстве накапливаются протоны из митохондриального матрикса. Электрон теряет порции своей энергии на всех участках траектории. На восходящих участках траектории электрон расходует энергию на совершение полезной работы, а на нисходящих участках полезная работа не совершается, хотя электрон также теряет часть своей энергии. 40-45 % энергии электронов используется для создания протонного градиента, который, в свою очередь расходуется на синтез АТФ. 20-25 % энергии электронов используется для транспорта необходимых субстратов. Остальная энергия электронов рассеивается в виде тепла, поэтому митохондрии место теплообразования. Движение электронов по дыхательной цепи создает протонный градиент и значительную трансмембранный электрохимический потенциал между межмембранным пространством и митохондриальным матриксом (его обозначают АцН + = 0,25 Вольта). ДцН* складывается из ДЧ* = 0,2 Вольта (это электрический потенциал, обусловленный разными зарядами по обе стороны мембраны) и АН + = 0,05 Вольта (химический потенциал, обусловленный различной концентрацией протонов по обе стороны мембраны).
Энергия этого электрохимического градиента затем используется для синтеза АТФ (её использует АТФ-синтетазный комплекс, комплекс V) и транспорта необходимых субстратов. Эндогенная вода
Эндогенной называется вода, возникающая в клетках в основном при функционировании дыхательных цепей в митохондриях. Некоторое количество эндогенной воды образуется при микросомальном окислении и при разложении пероксида водорода. У взрослого человека в сутки возникает 400^-450 мл эндогенной воды. Каталаза присутствует во всех клетках организма и разлагает пероксид водорода:
Глутатионпероксидаза также присутствует во всех клетках организма и разлагает пероксид водорода. Содержит селеноцистеин в активном центре.
2 Глутатион-SH + Н2О2 -> Глутатион-SS+ 2Н2ОГлутатионпероксидаза также восстанавливает гидроперикиси липидов. В конце дыхательной цепи электроны взаимодействуют с кислородом и протонами из матрикса и образуется молекулы воды: 4е’ + 4Н + + О2 —» 2Н2О.Особенность образования воды в этой реакции состоит в том, что в неё входят электроны с достаточно низким уровнем энергии. Они уже израсходовали свою значительную энергию на создание протонного градиента. Поэтому роль многочисленных переносчиков электронов, локализованных во внутренней митохонд-риальной мембране, состоит в замедлении взаимодействия высокоэнергетических электронов с кислородом. Если бы их не было, то выделяющаяся тепловая энергия разрушила бы митохондриальную мембрану.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10169 — | 7212 —
или читать все.
источник
Сколько новых одинарных нитей синтезируется при удвоении одной молекулы ДНК?
1) Четыре
2) Две
3) Одна
4) Три
Репликация ДНК сопровождается разрывом химических связей:
1) пептидных, между аминокислотами
2) ковалентных, между углеводом и фосфатом
3) водородных, между азотистыми основаниями
4) ионных, внутри структуры молекулы
- 3) водородных, между азотистыми основаниями
В состав ДНК не входит нуклеотид:
1) тимин
2) урацил
3) гуанин
4) цитозин
5) аденин
В дочерние клетки кожи человека при их размножении поступает от материнской клетки:
1) полная генетическая информация
2) половина информации
3) четверть информации
4) удвоенная информация
В гене закодирована информация о:
1) строении белков, жиров и углеводов
2) первичной структуре белка
3) последовательности нуклеотидов в ДНК
4) последовательности аминокислот в двух и более молекулах белков
Видовую принадлежность организма можно установить по анализу:
1) аминокислот
2) нуклеотидов
3) фрагмента ДНК
4) углеводов
Материальным носителем наследственной информации в эукариотической клетке является:
1) иРНК
2) тРНК
3) ДНК
4) хромосома
Источником энергии для синтеза АТФ в клетках печени кролика является:
1) свет
2) кислород
3) НАД × Н2
4) ацетил-КоА
Процесс окислительного фосфорилирования происходит в:
1) лизосомах
2) хлоропластах
3) рибосомах
4) митохондриях
Окислительным фосфорилированием называется процесс:
1) расщепления глюкозы
2) синтеза АТФ из АДФ и Ф в митохондриях
3) анаэробный гликолиз
4) присоединения фосфорной кислоты к глюкозе
- 2) синтеза АТФ из АДФ и Ф в митохондриях
источник
Энергетический обмен
Взаимосвязь обмена веществ и энергии.
Обмен веществ включает три этапа:
1) поступление веществ в организм;
2) метаболизм, или промежуточный обмен;
Выделение конечных продуктов обмена.
Вещества поступают в организм в результате дыхания (кислород), питания и пищеварения.
Основные вещества, поступающие с пищей – это макромолекулы:
– полисахариды;
В ходе пищеварения макромолекулы расщепляются на более мелкие молекулы (глюкоза, жирные кислоты, глицерол, аминокислоты).
В клетках организма эти вещества подвергаются превращениям, включаясь в метаболизм (обмен веществ).
Метаболизм – это взаимосвязь химических процессов, происходящих в организме.
Вся энергия необходимая для человека образуется в реакциях катаболизма.
В организме человека преобладает аэробный катаболизм.
В ходе аэробного катаболизма образуется до 95% всей энергии необходимой человеку.
Аэробный катаболизм веществ в тканях сопровождается потреблением O2 и выделением CO2.
Окисление органических веществ в организме кислородом (воздуха) с образованием воды и CO2 называется тканевым дыханием.
3 этапа аэробного катаболизма (тканевого дыхания):
1) Специфические (частные) пути катаболизма.
В ходе них образуется одно из 2-х веществ:
Примеры: гликолиз, b-окисление жирных кислот и др.
2) Общий путь катаболизма.
Включает 2 стадии:
а) окислительное декарбоксилирование пирувата;
Б) цикл Кребса.
3) Цепь переноса электронов (ЦПЭ) и сопряженное с ней окислительное фосфорилирование.
Энергия, которая выделяется при тканевом дыхании, используется для функционирования клеток.
Например, окисление 1 моль глюкозы происходит с выделением большого кол-ва энергии:
40-50% энергии окисляющихся веществ используется клетками для синтеза АТФ из АДФ и H3PO4:
! Реакция идет с затратой большого кол-ва энергии.
Для синтеза АТФ используется 2 источника энергии: окислительное и субстратное фосфорилирование.
1) Окислительное фосфорилирование происходит за счет энергии переноса электронов от органических веществ к O2.
! Может происходить только в аэробных условиях.
Этим способом образуется
2) Субстратное фосфорилирование происходит за счет энергии макроэргических связей некоторых соединений.
Например: 1,3-бифосфоглицерат, фосфоенолпируват, сукцинил-KoA, креатинфосфат и др.
Может происходить как в матриксе митохондрий, так и в цитоплазме клеток независимо от присутствия O2.
! Это вспомогательный путь синтеза АТФ в организме.
5 % от всего АТФ организма)
Содержание АТФ в организме человека составляет всего
Т.к. клетки не способны накапливать АТФ, а расход энергии происходит постоянно, в организме также постоянно идет синтез АТФ из АДФ и Н3РO4.
источник
Аденозинтрифосфорная кислота-АТФ — обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).
Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)
Следовательно, АТФ — своеобразный аккумулятор энергии в клетке, который «разряжается» при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.
АТФ синтезируется в митохондриях в несколько этапов. Первый из них — подготовительный — протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки — до аминокислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.
Схема Синтез АТФ в мвтохондрии клетки
ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ
I этап — подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал -> глюкоза
II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):
У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.
III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 —>3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых — синтез АТФ. Эти реакции идут в такой последовательности:
1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е—>H+
2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.
3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е—>O2-
4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.
5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф—>АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02: ( 4Н++202- —>2Н20+02)
Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:
(2СзНбОз + 6Oз + 36АДФ + 36Ф —> 6С02 + 36АТФ + +42Н20)
В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе — 2 АТФ и на III этапе — 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.
источник
11. Молочная кислота (лактат). Лактат является метаболическим продуктом анаэробного гликолиза и в нормальных условиях находится в равновесии с его непосредственным предшественником пируватом. Лактат образуется из пирувата в качестве конечного продукта анаэробного гликолиза. Эта окислительно-восстановительная реакция требует восстановленного никотинамидаденин-динуклеотида (NADH) и иона водорода (Н+) и катализируется лактатдегидрогеназой (ЛДГ). Реакция выражается следующим уравнением: Пируват + NADH+ЛДГ H+ *=t Лактат + NAD. Лактат может элиминироваться только путем превращения в пируват, концентрация лактата тесно связана с судьбой пирувата. Печень и почки являются основными органами, потребляющими лактат. При изъятии лактата главным метаболическим путем, используемым этими органами, становится глюконеогенез. Почки осуществляют клиренс лактата в основном через глюконеогенез. Скелетная мускулатура и миокард способны поглощать некоторое количество лактата из циркуляции; значение этого пути клиренса не представляется достаточно ясным. Утилизация лактата скелетной мускулатурой может зависеть от концентрации лактата в крови и от состояния (активного или пассивного) мышцы.
Молочнокислый ацидоз может рассматриваться как нарушение равновесия между скоростью продукции лактата в тканях с активным гликолизом и скоростью его утилизации тканями с активным глюконеогенезом.
12. Гликолиз — это анаэробный процесс. При расчете энергетического эффекта биохимического процесса в анаэробных условиях следует учитывать:
1) затраты АТФ (как правило, в фосфотрансферазных реакциях);
2) образование АТФ в процессах субстратного фосфорилирования.
В первом этапе гликолиза происходит затрата 2 моль АТФ: на фосфорилирование глюкозы и на фосфорилирование глюкозо-6-фосфата. Еще раз заострим внимание на том, что из 1 моль глюкозы образуется 2 моль 3-фосфоглицеринового альдегида, который вступает во второй этап гликолиза.
Во втором этапе гликолиза можно найти две реакции субстратного фосфорилирования, в которых образуется 2 моль АТФ при распаде 1 моль 3-фосфоглицеринового альдегида. Следовательно, при распаде 2 моль 3-фосфоглицеринового альдегида образуется 4 моль АТФ. Суммируя полученное и затраченное количество АТФ, получаем суммарный энергетический эффект гликолиза — 2 моль АТФ.
13. Ключевые ферменты гликолиза.
1. Гексокиназа — это регуляторный фермент гликолиза во внепеченочных клетках. Гексокиназа аллостерически ингибируется глюкозо-6-фосфатом. Глюкокиназа — регуляторный фермент гликолиза в гепатоцитах. Синтез глюкокиназы индуцируется инсулином.
2. Фосфофруктокиназа-1. Это главный ключевой фермент, катализирует реакцию, лимитирующую скорость всего процесса (наиболее медленная реакция). Синтез фермента индуцируется инсулином. Аллостерические активаторы — АМФ, АДФ, фруктозо-2,6- дифосфат. Уровень фруктозо-2,6-дифосфата увеличивается под действием инсулина и понижается под действием глюкагона. Аллостерические ингибиторы — АТФ, цитрат.
3. Пируваткиназа. Фермент активен в нефосфорилированной форме. Глюкагон (в гепатоцитах) и адреналин (в миоцитах) стимулируют фосфорилирование фермента, а значит инактивируют фермент. Инсулин, наоборот, стимулирует дефосфорилирование фермента, а значит активирует фермент. Аллостерический активатор — Фр-1,6-ФФ. Аллостерический ингибитор — АТФ, ацетил КоА. Синтез фермента индуцирует инсулин.
Аллостерическая регуляция скорости гликолиза, зависимая от изменения соотношения АТФ/АДФ, направлена на изменение скорости использования глюкозы непосредственно клетками печени. Глюкоза в клетках печени используется не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Основными потребителями АТФ в гепатоцитах являются процессы трансмембранного переноса веществ, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих процессах зависит скорость его синтеза. АТФ, АДФ и АМФ, а также NAD+ и NADH служат аллостерическими эффекторами некоторых гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и NADH ингибируют пируваткиназу, а АДФ активирует пируваткарбоксилазу.
14. Глико́лиз (фосфотриозный путь, или шунт Эмбдена — Мейерхофа, или путь Эмбдена-Мейергофа-Парнаса ) — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата), Гликолиз является основным путём катаболизма глюкозы в организме животных и человека.
Аэробный распад глюкозы можно выразить суммарным уравнением:
С6Н12О6 + 6 О2 → 6 СО2 + Н2О + 2820 кДж/моль.
Этот процесс включает несколько стадий:
Аэробный гликолиз — процесс окисления глюкозы с образованием двух молекул пирувата;
Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитрантом цикле;
ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.
15. Окислительное декарбоксилирование ПВК катализирует пируватдегидрогеназа. В состав пируватдегидрогеназного комплекса входит несколько структурно связанных ферментных белков и коферментов. ТПФ (Тиаминпирофосфат) катализирует начальную реакцию декарбоксилирования ПВК. Эта реакция идентична катализируемой пируватдекарбоксилазой. Однако в отличие от последней, пируватдегидрогеназа не превращает промежуточный продукт гидроксиэтил-ТПФ в ацетальдегид. Вместо этого гидроксиэтильная группа переносится к следующему ферменту в мультиферментной структуре пируватдегидрогеназного комплекса.
Окислительное декарбоксилирование ПВК является одной из ключевых реакций в обмене углеводов. В результате этой реакции ПВК, образовавшаяся при окислении глюкозы, включается в главный метаболический путь клетки — цикл Кребса, где окисляется до углекислоты и воды с выделением энергии. Таким образом, благодаря реакции окислительного декарбоксилирования ПВК создаются условия для полного окисления углеводов и утилизации всей заключенной в них энергии. Кроме того, образующаяся при действии ПДГ-комплекса активная форма уксусной кислоты служит источником для синтеза многих биологических продуктов: жирных кислот, холестерина, стероидных гормонов, ацетоновых тел и других.
Пируватдегидрогеназный комплекс (ПДК) — комплекс трех ферментов, который осуществляет окислительное декарбоксилирование пирувата. Продуктами окисления являются углекислый газ, ацетил-КоА, НАДН.Н+.
Пируватдегидрогеназный комплекс включает в себя 3 фермента, 3 кофактора (простетическая группа, связанная с апоферментом прочно ковалентно), 2 кофермента (простетическая группа, связанная с апоферментом непрочно нековалентно):
Е1 — пируватдегидрогеназа декарбоксилирующая.
Кофактором является активная форма витамина В1 — тиаминпирофосфат.
Кофактором является витаминоподобное вещество — липоевая кислота, которая присоединив 2 атома водорода может превращаться в дигидролипоил.
Коферментом является активная форма пантотеновой кислоты — НS-КоА, она принимает ацетильный остаток от липоевой кислоты.
Кофактором является флавинадениндинуклеотид (ФАД) — активная форма витамина В2.
Коферментом является активная форма витамина PP — никотинамидадениндинуклеотид (НАД+).
СН3-СО-СООН + НS-КоА + НАД+ => СО2 + СН3-СО
Последовательность реакций, катализируемых ПДК.
16. Энергетическое значение аэробного распада глюкозы.
При аэробном окислении 1 молекулы глюкозы образуется 2 молекулы ПВК, которые диффундируют в митохондрии и подвергаются окислительному декарбоксилированию с образованием 2 молекул АУК. При этом образуется 2 молекулы НАДН2, которые окисляются в БО, давая 6 АТФ. 2 АУК окисляются в ЦТК, давая 6 НАДН2, 2ФПН2 и 2АТФ, что в сумме даст 24 АТФ. Т.о., в митохондриях получается 24+6=30АТФ.
Значение: Гликолиз — катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.
Жиры синтезируются только при наличии энергии. убстратом для синтеза жиров de novo является глюкоза.
Как известно, попадая в клетку, глюкоза превращается в гликоген, пентозы и окисляется до пировиноградной кислоты. При высоком поступлении глюкоза используется для синтеза гликогена, но этот вариант ограничивается объемом клетки. Поэтому глюкоза «проваливается» в гликолиз и превращается в пируват либо напрямую, либо через пентозофосфатный шунт. Во втором случае образуется НАДФН, который понадобится впоследствии для синтеза жирных кислот.
17. Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот.
У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе).
Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие ферменты.
Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием
пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется с образованием оксалоацетата:
Затем оксалоацетат в результате декарбоксилирования и фосфорили-рования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):
Первый этап синтеза протекает в митохондриях (рис. 10.6). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостери-ческим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же, в митохондриях, восстанавливается в малат:
Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН/НАД+ относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии через митохондриальную мембрану. В цитозоле отношение НАДН/НАД+ очень мало, и малат вновь окисляется при участии цитоплазматической НАД-за-висимой малатдегидрогеназы:
Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитозоле клетки.
Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфо-енолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:
Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т.е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фос-фатазы:
18. Цикл Кори — совокупность биохимических ферментативных процессов транспорта лактата из мышц в печень, и дальнейшего синтеза глюкозы из лактата, катализируемое ферментами глюконеогенеза.
При интенсивной мышечной работе, а также в условиях отсутствия или недостаточного числа митохондрий (например, в эритроцитах или мышцах) глюкоза вступает на путь анаэробного гликолиза с образованием лактата. Лактат не может далее окисляться, он накапливается (при его накоплении в мышцах раздражаются чувствительные нервные окончания, что вызывает характерное жжение в мышцах). С током крови лактат поступает в печень. Печень является основным местом скопления ферментов глюконеогенеза (синтез глюкозы из неуглеводных соеднений), и лактат идет на синтез глюкозы.
Реакция превращения лактата в пируват катализируется лактатдегидрогеназой, далее пируват подвергается окислительному декарбоксилированию или может подвергаться брожению.
19. В условиях голодания часть белков мышечной ткани распадается до аминокислот, которые далее включаются в процесс катаболизма. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цитратного цикла, могут рассматриваться как потенциальные предшественники глюкозы и гликогена и носят название гликогенных. Например, окса-лоацетат, образующийся из аспарагиновой кислоты, является промежуточным продуктом как цитратногр цикла, так и глюконеогенеза.
Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в глюкозонеогенез. Следовательно, существует следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах → пируват в мышцах → аланин в мышцах → аланин в печени → глюкоза в печени → глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.
Различают местную и общую регуляцию.
Местная регуляция осуществляется путём изменения активности ферментов под действием различных метаболитов внутри клетки.
Регуляция гликолиза в целом, сразу для всего организма, происходит под действием гормонов, которые, влияя через молекулы вторичных посредников, изменяют внутриклеточный метаболизм.
Важное значение в стимуляции гликолиза принадлежит инсулину. Глюкагон и адреналин являются наиболее значимыми гормональными ингибиторами гликолиза.
Инсулин стимулирует гликолиз через:
активацию гексокиназной реакции;
Также на гликолиз влияют и другие гормоны. Например, соматотропин ингибирует ферменты гликолиза, а тиреоидные гормоны являются стимуляторами.
Регуляция гликолиза осуществляется через несколько ключевых этапов. Реакции, катализируемые гексокиназой (1), фосфофруктокиназой (3) и пируваткиназой (10) отличаются существенным уменьшением свободной энергии и являются практически необратимыми, что позволяет им быть эффективными точками регуляции гликолиза.
Регуляция глюконеогенеза. Уменьшение количества углеводов в клетках или снижение сахара в крови является основным стимулом для увеличения скорости глюконеогенеза. Кроме того, уменьшение количества углеводов может стать причиной изменения направления гликолитических или фосфоглюконатных реакций, что способствует превращению дезаминированных аминокислот в углеводы, наряду с глицеролом. Такой гормон, как кортизол, играет особенно важную роль в регуляции процессов глюконеогенеза.
источник
А. Энергетический обмен в мышечной ткани
Важнейшей функцией мышечного волокна является сократительная. Процесс сокращения и расслабления связан с потреблением АТФ (АТР), гидролиз которого катализирует миозин-АТФ-аза [ 1 ] (см. рис. 325). Однако небольшой запас АТФ, имеющийся в мышцах, расходуется менее чем за 1 с после стимуляции.
Потребности работающей мышцы в АТФ удовлетворяются за счет следующих ферментативных реакций:
1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счет переноса фосфатной группы креатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой [ 2 ]. Однако и этот мышечный резерв «высокоэргического фосфата» расходуется в течение нескольких секунд. В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-N-метилглицина). Креатин, который синтезируется в печени, поджелудочной железе и почках, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счет неферментативной реакции [ 3 ] с образованием креатинина , который поступает в почки и удаляется из организма (см. рис. 317).
2 Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген (см. рис. 159). В покоящейся ткани содержание гликогена составляет до 2% от мышечной массы. При деградации под действием фосфорилазы гликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счет анаэробного гликолиза восстанавливается в молочную кислоту ( лактат ), которая диффундирует в кровь (цикл Кори, см. рис. 331).
3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где подвергается окислению. Окислительное фосфорилирование (см. с. 143) — наиболее эффективный и постоянно действующий путь синтеза АТФ. Однако этот путь реализуется при условии хорошего снабжения мышц кислородом. Наряду с глюкозой, образующейся при расщеплении мышечного гликогена, для синтеза АТФ используются и другие «энергоносители», присутствующие в крови: глюкоза крови, жирные кислоты и кетоновые тела .
4. Образование инозинмонофосфата [ИМФ (IMP)]. Другим источником быстрого восстановления уровня АТФ является конверсия АДФ в АТФ и АМФ (AMP), катализируемая аденилаткиназой (миокиназой) [ 5 ]. Образовавшийся АМФ за счет дезаминирования частично превращается в ИМФ (инозинмонофосфат) (см. рис. 191), что сдвигает реакцию в нужном направлении.
Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование . За счет этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда — это следствие перебоев в поступлении кислорода).
В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин (Mb) — близкий гемоглобину белок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишенных красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз . Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идет с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения рН в мышечных клетках.
Расщепление гликогена контролируется гормонами (см. рис. 123). Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счет образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличении концентрации ионов Са 2+ во время мышечного сокращения.
источник
52. Эндэргонические и экзэргонические реакции в живой клетке. Макроэргические соединения. Дегидрирование субстратов и окисление водорода как основной источник энергии для синтеза атф.
Направление химической реакции определяется значением ΔG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ΔG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.
Если ΔG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими.
Если абсолютное значение ΔG велико, то система устойчива, и реакция в таком случае практически не осуществляется. При ΔG, равном нулю, система находится в равновесии .
В биологических системах термодинамически невыгодные (эндергонические) реакции могут протекать лишь за счёт энергии экзергонических реакций. Такие реакции называют энергетически сопряжёнными. Многие из этих реакций происходят при участии аденозинтрифосфата (АТФ), играющего роль сопрягающего фактора.
Б. Характеристика высокоэнергетических фосфатов. Цикл АТФ-АДФ
В живых организмах существует целая группа органических фосфатов, гидролиз которых приводит к освобождению большого количества свободной энергии. Такие соединения называют высокоэнергетическими фосфатами .
Разные фосфорилированные соединения обладают разным запасом свободной энергии. К группе высокоэнергетических фосфатов, помимо АТФ, относят енолфосфаты, ангидриды и фосфогуанидины.
АТФ — молекула, богатая энергией, поскольку она содержит две фосфоангидридные связи (β, γ). При гидролизе концевой фосфоангидридной связи АТФ превращается в АДФ и ортофосфат Рi При этом изменение свободной энергии составляет -7,3 ккал/моль. При условиях, существующих в клетке в норме (рН 7,0, температура 37 °С), фактическое значение ΔG 0 ‘ для процесса гидролиза составляет около -12 ккал/моль. Величина свободной энергии гидролиза АТФ делает возможным его образование из АДФ за счёт переноса фосфатного остатка от таких высокоэнергетических фосфатов, как, например, фосфоенолпируват или 1,3-бисфосфоглицерат; в свою очередь, АТФ может участвовать в таких эндергонических реакциях, как фосфорилирование глюкозы или глицерина. АТФ выступает в роли донора энергии в эндергонических реакциях многих анаболических процессов. Некоторые биосинтетические реакции в организме могут протекать при участии других нуклеозидтрифосфатов, аналогов АТФ; к ним относят гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ) и цитидинтрифосфат (ЦТФ). Все эти нуклеотиды, в свою очередь, образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, за счёт свободной энергии АТФ совершаются различные виды работы, лежащие в основе жизнедеятельности организма, например, такие как мышечное сокращение или активный транспорт веществ.
Таким образом, АТФ — главный, непосредственно используемый донор свободной энергии в биологических системах. В клетке молекула АТФ расходуется в течение одной минуты после её образования. У человека количество АТФ, равное массе тела, образуется и разрушается каждые 24 ч.
Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счёт энергии окисления органических соединений . Цикл АТФ-АДФ — основной механизм обмена энергии в биологических системах, а АТФ — универсальная «энергетическая валюта».
Г. Основные этапы трансформации энергии катаболических процессов
Энергия освобождается в процессе ферментативного окисления метаболитов специфическими дегидрогеназами. В реакциях дегидрирования электроны и протоны переходят от органических субстратов на коферменты NAD- и FAD-зависимых дегидрогеназ. Электроны, обладающие высоким энергетическим потенциалом, передаются от восстановленных коферментов NADH и FADH2 к кислороду через цепь переносчиков, локализованных во внутренней мембране митохондрий. Восстановление молекулы О2 происходит в результате переноса 4 электронов. При каждом присоединении к кислороду 2 электронов, поступающих к нему по цепи переносчиков, из матрикса поглощаются 2 протона, в результате чего образуется молекула Н2О.
Окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды, называют тканевым дыханием, а цепь переноса электронов (ЦПЭ) — дыхательной цепью.
Электроны, поступающие в ЦПЭ, по мере их продвижения от одного переносчика к другому теряют свободную энергию. Значительная часть этой энергии запасается в форме АТФ, а часть энергии рассеивается в вице тепла. Кроме того, электроны с высоким энергетическим потенциалом, возникающие при окислении различных субстратов, могут быть использованы в реакциях биосинтеза, для которых помимо АТФ требуются восстановительные эквиваленты, например NADPH.
53. Строение митохондрий и структурная организация дыхательной цепи. НАД-зависимые и флавиновые дегидрогеназы. Комплексы дыхательной цепи: НАДН-дегидрогеназа, убихинол-дегидрогеназа (цитохром C редуктаза), цитохром C оксидаза.
Рис. 6-13. Сопряжение дыхания и синтеза АТФ в митохондриях. I — NADH-дегидрогеназа; II — сукцинат дегидрогеназа; III — QН2-дегидрогеназа; IV — цитохромоксидаза; V — АТФ-синтаза. Энергия протонного потенциала (электрохимического потенциала ΔμН + используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы.
Рис. 6-14. Сопряжение переноса электронов через дыхательный комплекс III с транспортом Н + через мембрану. Восстановленный убихинон (QH2) взаимодействует с Fе 3+ гема b1 и, восстанавливая его, освобождает протон в водную фазу, превращаясь в семихинон (НQ • ). Электрон от тема b1 переносится на Fe 3+ тема b2. HQ • отдаёт второй электрон на FeS-центр, расположенный ближе к наружной поверхности мембраны; при этом второй протон оказывается в межмембранном пространстве; электрон передаётся на цитохром с1, а далее на цитохром с. Окисленный Q диффундирует к внутренней стороне мембраны, где получает электрон от тема b2 и протон из матрикса, превращаясь в НQ • . НQ • получает электрон от комплекса I и протон из матрикса; в мембране образуется QН2, и весь процесс повторяется сначала.
Таблица 6-4. Компоненты митохондриальной цепи переноса электронов
источник
Дегидрирование субстратов и окисление водорода (образование воды) как источник энергии для синтеза АТФ
АТФ — чрезвычайно важная молекула клетки. Она непрерывно синтезируется и используется. Энергия для синтеза АТФ поступает от субстратов, содержащих высокоэнергетические электроны в ходе их дегидрирования. Электроны высоких энергий извлекаются из субстратов в ходе гликолиза (в цитозоле), при преобразовании пирувата в ацетил-КоА и в цикле трикарбоновых кислот (в митохондриаль-ном матриксе). Молекулы НАДН и ФАДН2 переносят эти электроны в дыхательную цепь, локализованную в во внутренней митохондриальной мембране.
Дыхательная цепь состоит из переносчиков электронов, сгруппированных в 4 ферментативных комплекса, и ферментов. Особенность переносчиков электронов дыхательной цепи в том, что каждый способен принимать электроны от предыдущего и отдавать последующему. Прием и передача электронов молекулами переносчиков происходит упорядоченно в соответствии с их электрохимическими потенциалами. Под электрохимическим потенциалом молекулы понимают её способность вступать во взаимодействие с электроном. Т.е. присоединять электрон и при этом восстанавливаться и отдавать его и при этом окисляться. Электрохимический потенциал молекулы это её способность участвовать в окислительно-восстановительных реакциях. В начало дыхательной цепи электроны вносит НАДН — он обладает самым низким электрохимическим потенциалам. В конце дыхательной цепи находиться кислород — его электрохимический потенциал самый высокий. Электроны, перемещаясь по дыхательной цепи в сторону кислорода, совершают полезную работу по переносу протонов из митохондриалыуого матрикса в межмембранное пространство (рис. 13). На восходящих участках тра-
ектории каждый электрон перемещается вместе с протоном, т.е. в форме атома водорода, затем отделяется от протона на внешней стороне мембраны и продолжает движение внутри мембраны. В межмембранном пространстве накапливаются протоны из митохондриального матрикса. Электрон теряет порции своей энергии на всех участках траектории. На восходящих участках траектории электрон расходует энергию на совершение полезной работы, а на нисходящих участках полезная работа не совершается, хотя электрон также теряет часть своей энергии. 40-45 % энергии электронов используется для создания протонного градиента, который, в свою очередь расходуется на синтез АТФ. 20-25 % энергии электронов используется для транспорта необходимых субстратов. Остальная энергия электронов рассеивается в виде тепла, поэтому митохондрии место теплообразования. Движение электронов по дыхательной цепи создает протонный градиент и значительную трансмембранный электрохимический потенциал между межмембранным пространством и митохондриальным матриксом (его обозначают АцН + = 0,25 Вольта). ДцН* складывается из ДЧ* = 0,2 Вольта (это электрический потенциал, обусловленный разными зарядами по обе стороны мембраны) и АН + = 0,05 Вольта (химический потенциал, обусловленный различной концентрацией протонов по обе стороны мембраны).
Энергия этого электрохимического градиента затем используется для синтеза АТФ (её использует АТФ-синтетазный комплекс, комплекс V) и транспорта необходимых субстратов. Эндогенная вода
Эндогенной называется вода, возникающая в клетках в основном при функционировании дыхательных цепей в митохондриях. Некоторое количество эндогенной воды образуется при микросомальном окислении и при разложении пероксида водорода. У взрослого человека в сутки возникает 400^-450 мл эндогенной воды. Каталаза присутствует во всех клетках организма и разлагает пероксид водорода:
Глутатионпероксидаза также присутствует во всех клетках организма и разлагает пероксид водорода. Содержит селеноцистеин в активном центре.
2 Глутатион-SH + Н2О2 -> Глутатион-SS+ 2Н2ОГлутатионпероксидаза также восстанавливает гидроперикиси липидов. В конце дыхательной цепи электроны взаимодействуют с кислородом и протонами из матрикса и образуется молекулы воды: 4е’ + 4Н + + О2 —» 2Н2О.Особенность образования воды в этой реакции состоит в том, что в неё входят электроны с достаточно низким уровнем энергии. Они уже израсходовали свою значительную энергию на создание протонного градиента. Поэтому роль многочисленных переносчиков электронов, локализованных во внутренней митохонд-риальной мембране, состоит в замедлении взаимодействия высокоэнергетических электронов с кислородом. Если бы их не было, то выделяющаяся тепловая энергия разрушила бы митохондриальную мембрану.
источник
3) Анаэробный гликолиз. В этом процессе катаболизм 1 моль глюкозы без участия митохондриальной дыхательной цепи сопровождается синтезом 2 моль АТФ и 2 моль лактата. АТФ образуется за счёт 2 реакций субстратногофосфорилирования. Поскольку глюкоза распадается на 2 фосфотриозы, то с учётом стехиометрического коэффициента, равного 2, количество моль синтезированного АТФ равно 4. Учитывая 2 моль АТФ, использованных на первом этапе гликолиза, получаем конечный энергетический эффект процесса, равный 2 моль АТФ.
33) Хрусталик глаза является светопреломляющей средой глаза, и митохондрии в нем отсутствуют. В качестве источника энергии в хрусталике используется глюкоза. Какой путь катаболизма глюкозы обеспечивает энергией АТФ хрусталик глаза?
1) Напишите схему метаболического пути, обеспечивающего хрусталик глаза энергией. Укажите ферменты, коферменты реакций
2) Перечислите ткани и клетки, в которых синтез АТФ происходит так же, как в хрусталике, укажите причину только такого способа фосфорилирования и назовите этот способ фосфорилирования
4) Напишите, используя формулы, реакцию дегидрирования, протекающую в этом процессе и реакцию образования конечного продукта
1)
2)эритроциты, хрусталик глаза, мышцах, нет рецепторов инсулина и нет митохондрий
3) 5 реакция дегидрирования и 10 реакция образования конечного продукта.
34) Хрусталик глаза является светопреломляющей средой глаза, и митохондрии в нем отсутствуют. В качестве источника энергии в хрусталике используется глюкоза. Какой путь катаболизма глюкозы обеспечивает энергией АТФ хрусталик глаза?
1) Напишите схему метаболического пути, обеспечивающего хрусталик глаза энергией.
2) Укажите ферменты, коферменты реакций
3) Укажите, каким дальнейшим превращениям может подвергнуться конечный продукт этого процесса и последствия, возникающие при его накоплении
1)
3) Молочная кислота (лактат) — продукт анаэробного метаболизма глюкозы (гликолиза), в ходе которого она образуется из пирувата под действием лактатдегидрогеназы. При достаточном поступлении кислорода пируват подвергается метаболизму в митохондриях до воды и углекислоты. В анаэробных условиях, при недостаточном поступлении кислорода, пируват преобразуется в лактат.
Лактатный ацидоз — один из вариантов метаболического ацидоза, который можно заподозрить при высоком анионном дефиците и отсутствии других причин, таких как почечная недостаточность, приём салицилатов, отравление метанолом, злоупотребление этанолом, значительная кетонемия.
35)Превращение пирувата в лактат – обратимая реакция, которая катализируется лактатдегидрогеназой (ЛДГ), являющейся олигомером. ЛДГ представляет собой тетрамер, состоящий из М- и Н-субъединиц, которые, комбинируясь между собой, образуют пять различных тетрамеров (М4 (ЛДГ1), М3Н1 (ЛДГ2), М2Н2 (ЛДГ3), М1Н3 (ЛДГ4), Н4 (ЛДГ5)). Эти изоферменты отличаются друг от друга первичной структурой и обладают различными физико-химическими свойствами, а следовательно, разным сродством к субстрату. Кроме этого, они имеют различную органную локализацию. Для мышцы сердца характерен изомер Н4, для скелетных мышц – М4. В мышце сердца ЛДГ1 преимущественно катализирует реакцию превращения лактата в пируват.
Объясните роль этого изофермента в метаболизме сердечной мышцы.
1) Напишите реакцию, катализируемую данным ферментом в мышце сердца
2) Напишите схему процесса, обеспечивающего включение продукта этой реакции в дальнейший путь окисления до СО2 и Н2О в мышце сердца
3) Рассчитайте энергетический эффект указанного процесса
1) Изофермент ЛДГ 1 присутствует в большой концентрации в мышце сердца (тетрамер НННН), а также в эритроцитах и корковом веществе почек; Определение изоферментов имеет важное диагностическое значение, т. к. повышение концентрации отдельных изоферментов характеризует повреждение конкретных органов. Повышение активности ЛДГ-1 в течение первых трёх суток после появления болей позволяет с большой вероятностью диагностировать инфаркт миокарда или исключить этот диагноз. Наиболее высокую диагностическую значимость повышение ЛДГ-1 имеет в первые 16 — 20 часов инфаркта миокарда, когда общая активность ЛДГ не превышает нормы. ЛДГ-1 может оставаться увеличенной после того как общая ЛДГ уже возвращается к норме. При небольших инфарктах активность ЛДГ-1 может быть увеличенной, в то время как общая ЛДГ остается в пределах нормы.
2)ЛДГ, и ЛДГ2 (Н-типы) — в аэробных, когда пируват быстро окисляется до СО2 и Н2О, а не восстанавливается до молочной кислоты.
Окислительное декарбоксилированиепирувата 2 (Пируват → Ацетил-КоА) | +6 |
Цитратный цикл 2 (Ацетил-КоА → СО2+ Н2О) | |
+24 |
36) В опыте к гомогенату мышц добавили глюкозу. Сколько молекул АТФ может синтезироваться за счет энергии окисления 1 молекулы глюкозы в специфическом пути катаболизма, если в опыте использовали гомогенат ткани с нативными митохондриями, но в присутствии барбитуратов? 1 АТФ
1) Написать схему метаболического пути, в котором синтезируется АТФ в этих условиях
2) Показать схему процесса, который нарушают барбитураты в выбранном метаболическом пути
3) Какой дыхательный комплекс барбитураты ингибируют. Укажите строение кофермента и назовите витамин соответствующей дегидрогеназы
1)
2)амитал натрия — ингибитор дыхательной цепи, подавляет активность НАДН–дегидрогеназы; тормозит перенос водорода от ФМН к убихинону.
МДГ |
НАДН2 |
НАД |
3)дыхательный комплекс, комплекс – БО, никотинамид витамин РР, Ко – НАД и НАДФ
37) Катаболизм глюкозы с образованием пирувата может происходить как в аэробных, так и анаэробных условиях. Сколько молекул АТФ будет синтезироваться при распаде глюкозы до двух молекул пирувата в аэробных и анаэробных условиях?
Образуется 37-38 АТФ(аэробный путь) и 3 АТФ(анаэробный путь окисления)
1) Представьте схему гликолиза и отметьте реакции, сопряженные с использованием и синтезом АТФ
2) Напишите, используя формулы, окислительную реакцию гликолиза
3) Опишите пути использования НАДН2 в аэробных и анаэробных условиях
1)
3)НАДН2 в анаэробных условиях идет на присоединение водорода к ацетальдегиду или пирувату, в аэробных условиях- в цепь переноса электронов.
38) Спринтер и стайер соревнуются на двух дистанциях – 100 м и 10 км. Спринтер завершает стометровку, стайер бежит десятый километр. Укажите различия в энергетическом обеспечении работы мышц у этих бегунов.
1) Приведите схему катаболизма глюкозы, который является источником энергии для работы мышц у стайера
2) Выпишите субстраты, вступающие в реакции дегидрирования, укажите путь водорода от одного из субстратов к кислороду в цепи БО (биологическом окислении)
3) Укажите различия в ходе процесса, в составе конечных продуктов и энергетическом эффекте специфического пути катаболизма глюкозы у спринтера и стайера
1)Аэробный гликолиз.
1)
2)Атомы водорода (протоны и электроны.) от окисляемого субстрата присоединяются к НАД+ . Восстановленная форма НАД+ (НАДН) передает водород флавопротеидам. Дальнейшая судьба водорода может быть различной. Водород с флавопротеидов может быть передан прямо на кислород с образованием перекиси водорода.
3)Различия анаэробном ( 2 лактата и 2 АТФ) у спринтера и аэробном (6 СО2, 6Н2О и 36-38 АТФ) у стайера гликолизе.
39) Во время обследования у пациента выявлены анемия и наличие в эритроцитах телец Хайнца – результат агрегации протомеров гемоглобина вследствие окисления SH-групп цистеиновых остатков гемоглобина активными формами кислорода и образования дисульфидных связей. Какие нарушения в метаболизме эритроцитов могут быть причиной данной клинической ситуации.
1) Укажите, с помощью каких реакций цистеиновые остатки гемоглобина поддерживаются в восстановленном состоянии и назовите кофермент, участвующий в этом процессе
2) Напишите схему процесса, в котором образуется восстановленная форма этого кофермента
3) Укажите,дефект работы какого фермента может привести к дефициту необходимого кофермента и быть причиной описанной клинической ситуации
1)Взаимодействие восстановленного глутатиона с пероксидом водорода в эритроцитах предохраняет цистеиновые остатки в протомерах гемоглобина от окисления.
2)
3) В синтезе глутатиона имеют место два этапа, связанных с действием ферментов. Первым ферментом является гамма-глутамил-цистеин синтетаза (гамма-ГЦ синтетаза), вторым — глутатионсинтетаза (ГТ синтетаза). В результате блокады любого из этапов развивается дефицит глутатиона, а следовательно, и восстановленного глутатиона.
40) Два студента пришли сдавать кровь на «сахар» в поликлинику. Когда результаты анализов были готовы, выяснилось, что у певого студента концентрация глюкозы в крови составляет 5,6 мМ/л, а у второго – 7 мМ/л. При обсуждении полученных показателей выяснилось, что второй студент утром за полчаса до обследования выпил сладкий чай.
1) Чем обусловлена рекомендация, что количественное определение глюкозы в биохимических лабораториях проводят строго натощак?
2) Какова концентрация глюкозы в крови в норме и сколько держится повышенный уровень глюкозы после принятия пищи?
3) Какой процесс усиливается в печени при повышении глюкозы в крови после принятия пищи?
1)Чтобы не перепутать с:
-нарушенная толерантность к глюкозе;
-нарушенный уровень глюкозы крови (гликемии) натощак.
2)от 3,3 до 5,5 ммоль/л и 2 часа
3)Повышение глюкозы в крови после приема углеводной пищи активирует ферментативный процесс синтеза гликогена в печени — гликогеногенез.
41)Одним из субстратов глюконеогенеза при интенсивной физической нагрузке и голодании является глицерин, образующийся при распаде жиров в жировой ткани. Подсчитайте сколько молекул глицерина и АТФ необходимо для синтеза 1 молекулы глюкозы.
1)Дополните схему синтеза глюкозы из глицерина необходимыми метаболитами:
2)Напишите первые две реакции формулами с указанием ферментов и коферментов
Ко-пиридоксальфосфат, пиридоксаминфосфат витамин В6
3)Глицеринàглицерол-3-фосфат
42) Клинические проявления цинги – кровоизлияния под кожу и слизистые оболочки, кровоточивость десен, выпадение зубов, анемия. С недостатком какого витамина связано это заболевание и к нарушению какого процесса оно приводит?
1) Назовите этот витамин, напишите его формулу
2) Вспомните, в синтезе какого белка участвует этот витамин, опишите строение этого белка
3) Напишите реакцию, в которой участвует данный витамин, объясните его функцию, назовите фермент; укажите вещества, необходимые для протеканияэтой реакции
1) Витамин С
2)Участвует в синтезе коллагена. Коллаген имеет фибриллярное строение и состоит главным образом из нитевидных частиц (протофибрилл), для которых характерно явление двойного лучепреломления. По данным электронной микроскопии, диаметр протофибрилл 50— 100 нм. По элементарному химическому составу коллаген отличается от большинства белков (например, альбуминов, глобулинов) повышенным содержанием азота — в среднем 17,6% (колебания от 17,0 до 18,3%). Коэффициент пересчета азота на белок для коллагена равен 5,68.Коллаген характеризуется некоторыми особенностями аминокислотного состава. В отличие от других белков в коллагене не содержатся триптофан, цистин и цистеин, очень мало тирозина и метионина, но преобладают гликокол, пролин и оксипролин, а также оксилизин, не обнаруженный в других белках. Следовательно, по аминокислотному составу коллаген не является полноценным белком.
3)Гидроксилировании пролина и лизина при синтезе коллагена: гидрокислирование пролина осуществляется пролингидроксидазой с участием витамина С, Fe, α – кетоглутаровой кислоты и молекулярного кислорода:
α – кетоглутарат + пролин + = сукцинат + гидроксипролин +
· Это – антиоксидант, причем один из самых действенных. Участвует в регуляции окислительно-восстановительных процессов.
· Защищает сосуды от холестериновых отложений, нормализует проницаемость капилляров, укрепляет сосуды и способствует эластичности их стенок.
· Оказывает противовоспалительное и противоаллергическое действие. Повышает иммунитет и защищает организм человека от инфекций.
· Участвует в синтезе гормонов и коллагена. Именно поэтому косметологи любят применять аскорбиновую кислоту в производстве средств по уходу за кожей. Хотя надо признать, что коллаген нужен не только для красивой и упругой кожи, но и для здоровья сосудов и костей.
· Витамин С необходим для лучшего усвоения кальция и железа. Он способствует превращению трехвалентного железа в двухвалентного, что облегчает его усвоение.
· Помогает быстрее восстановить утраченные силы при любом заболевании, которое перенес человек. Поэтому рекомендован послеоперационным больным, онкологическим и т.д.
· Необходим для очищения организма от вредных элементов, которые попадают к нам с водой, пищей и при дыхании (свинец, ртуть и др.).
· Незаменим в стрессовых ситуациях, поскольку участвует в выработке гормонов, вырабатываемых надпочечниками во время напряженной работы нервной системы.
· Участвует в нормализации свертываемости крови.
43) Альфа-цепь коллагена содержит много остатков глицина. Мутации, в результате которых глицин заменяется на какую-нибудь другую аминокислоту, приводят к серьезным последствиям: ломкости костей, аномалиям зубов, гиперподвижности суставов и т.д. почему это происходит?
1) Укажите аминокислотный состав коллагена; объясните, какое значение это имеет для формирования структуры коллагена
2) Назовите особенности первичной структуры коллагена и его основную функцию
3) Объясните, какое значение имеют остатки глицина для образования нормальной молекулы тропоколлагена
1)пептидная цепь коллагена содержит около 1000 аминокислотных остатков, из которых каждая третья аминокислота — глицин, 20% составляют пролин и гидроксипролин, 10% — аланин, оставшиеся 40% — другие аминокислоты; в коллагене отсутствуют цистеин и триптофан и содержится очень мало гистидина, метионина и тирозина; N- и С-концевые пептиды проколлагена содержат остатки Цистеина, которые формируют внутри- и межцепочечные (только С-концевые пептиды) дисульфидные связи; эти пептиды необходимы для образования тройной спирали коллагена — при их отсутствии спирализация трехцепочечной структуры коллагена нарушается.
2)Особенности первичной структуры обеспечивают уникальную конформацию коллагена. Полипептидная цепь коллагена укладывается в левозакрученную α-спираль; она более развернута, и на один виток приходится три аминокислотных остатка, поэтому в цепи глицин всегда находится над глицином — это обстоятельство имеет важнейшее значение для последующей укладки коллагена и выполнения его функций. Функция – структурная, регуляторная.
3)Тропоколлаген — структурная единица коллагена. Три полипептидные цепи скручиваясь, образуют молекулу тропоколлагена. Каждая спираль состоит из многократно повторяющихся триад аминокислот, из которых третья всегда глицин, вторая — пролин или лизин, а первая любая (кроме указанных трех). Спиральная организация придаст волокнам структурную устойчивость и повышенную сопротивляемость растяжению. Глицин, имеющий вместо радикала атом водорода, всегда находится в месте пересечения цепей; отсутствие радикала позволяет цепям плотно прилегать друг к другу.
44) Жиры пищи, полученной человеком, содержали линолевую, линоленовую, олеиновую кислоты. В составе хиломикронов через 1 час после еды были обнаружены жиры, содержащие в основном пальмитиновую, линолевую, стеариновую и олеиновую кислоты. Объясните эти результаты.
1) Напишите реакцию гидролиза жира, полученного с пищей
2) Представьте схему ресинтеза ТАГ в стенке кишечника
3) Напишите реакции, которые объясняли бы разницу в составе жиров пищи и жиров в составе хиломикронов.
1)
2)1 путь ресинтеза — моноацилглицеридный путь
2 путь — глицерофосфатный путь
3) Хиломикроны образуются в стенке кишечника. Состоят из гидрофобного ядра и гидрофильной оболочки. Состав хиломикронов: ТАГ-80%, ХС-11%, ФЛ-7%, Белки-2%. В гидрофобное ядро входят ТАГ и ХС и его эфиры, гидрофильную оболочку образуют ФЛ и белки. Белки — это аполипопротеины В-48, C-II, Е (апо В-48, апо С-2,апо-Е). Диаметр хиломикронов 0,1-0,5 мкм (до 1,5 мкм).ХМ являются транспортной формой липидов. Они осуществляют транспорт липидов от стенки кишечника до легких. Роль ХМ: транспорт экзогенных пищевых липидов из стенки кишечника в ткани, в основном в легкие, а затем в печень.
45) После еды, содержащей жиры и углеводы, внешний вид сыворотки крови изменяется, она становится непрозрачной («молочная сыворотка»), а через 2-3 часа вновь выглядит прозрачной. Объясните эти изменения.
1) Объясните, почему состояние крови после приема жирной пищи характеризуют как «алиментарная гиперлипидемия»
2) Укажите, какие из липопротеинов будут преобладать в сыворотке крови через 1 час после приема насыщенной жирами пищи
3) Укажите состав основных компонентов этих липопротеинов
1)Увеличение общих липидов в сыворотке крови носит название гиперлидемии. Она наблюдается после приема пищи — это физиологическое явление (алиментарная гиперлипидемия). Образовавшиеся в энтероцитах липопротеины представляют собой незрелые хиломикроны. Незрелые хиломикроны сначала попадают в лимфу, затем — в кровоток. В крови незрелые хиломикроны получают от ЛПВП, образующихся в печени, апопротеины — С-II, Е и превращаются в зрелые хиломикроны.Появление в крови в абсорбтивный период хиломикронов делает сыворотку крови опалесцирующей. В крови зрелые хиломикроны подвергаются действию фермента липопротеинлипазы. Липопротеинлипаза гидролизует жиры в составе хиломикронов до глицерола и свободных жирных кислот. АпоС-II после удаления ТАГ из ХМ переносятся обратно на ЛПВП. Остаточные хиломикроны в клетках печени подвергаются гидролитическому действию ферментов лизосом. В течение 1-3 часов хиломикроны исчезают из крови и сыворотка человека в постабсорбтивный период становится более прозрачной.
2)В сыворотке крови через 1 час после приема насыщенной жирами пищи будут преобладать ХМ, ЛПОНП, ЛПНП, ЛПВП.
Показатель | Хиломикроны | ЛПОНП | ЛПНП | ЛПВП |
Состав, % Белки ФЛ ХС ЭХС ТАГ |
46) У женщины 40 лет обнаружены камни в желчном пузыре, которые периодически перекрывали желчный проток и нарушали отток желчи в кишечник. Укажите все возможные последствия секреции желчи.
1) Напишите формулы желчных кислот и объясните роль этих молекул в переваривании жиров
2) Укажите функцию желчных кислот во всасывании продуктов переваривания липидов и нарисуйте соответствующую схему
3) Укажите, дефицит каких веществ может возникнуть у таких больных, и каковы могут быть последствия и симптомы
1)
Роль желчных кислот:
1) Участвует в эмульгировании жиров в кишечнике
2) активаторы панкреатической липазы
2) Желчные кислоты выполняют следующие функции:
• участвуют в переваривании и всасывании липидов;
• являются конечными продуктами катаболизма холестерола, в виде которых он экскретируется с калом из организма;
• являются компонентами желчи, удерживающими холестерол в растворенном состоянии
3)Возникает дефицит желчных кислот.
1. Участвуют в эмульгировании жиров в кишечнике
2. Активаторы панкреатической липазы.
3. Входят в состав мицелл.( всасывание нерастворимых в воде продуктов гидролиза липидов)
47) В клетках, где идет синтез жирных кислот, одновременно должен осуществляться и пентозофосфатный цикл (ПФЦ) окисления глюкозы. Объясните взаимосвязь между этими процессами.
1) Представьте схему ПФЦ и синтеза жирных кислот
2) Укажите кофермент (и витамин в его составе), который поставляет ПФЦ для реакций синтеза жирных кислот, и напишите реакции синтеза жирных кислот, протекающие с его участием
3) Почему интенсивность ПФЦ высока в печени, жирной ткани и эритроцитах
1)
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9510 — | 7531 —
или читать все.
87.119.242.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
источник