Меню Рубрики

Как осуществляется транспорт холестерина от периферических тканей в печень

В кровотоке переносчиками липидов являются липопротеины. Они состоят из липидного ядра, окруженного растворимыми фосфолипидами и свободным холестерином, а также апопротеинами, которые отвечают за направление липопротеинов к специфическим органам и тканевым рецепторам. Известно пять основных классов липопротеинов, различающихся по плотности, липидному составу и аполипопротеинам (табл. 5.1).

Рис. 5.7 дает характеристику основных путей метаболизма циркулирующих липопротеинов. Жиры, поступившие с пищей, включаются в цикл, известный как экзогенный путь. Пищевые холестерин и триглицериды всасываются в кишечнике, включаются в хиломикроны клетками кишечного эпителия и транспортируются через лимфатические протоки в венозную систему. Эти большие, богатые триглицеридами частицы гидроли-зируются ферментом липопротеинлипазой, которая высвобождает жирные кислоты, захватываемые периферическими тканями, такими как жировая и мышечная. Образующиеся остатки хиломикронов состоят преимущественно из холестерина. Эти остатки поглощаются печенью, которая затем выделяет липиды в виде свободного холестерина либо желчных кислот обратно в кишечник.

Эндогенный путь начинается с того, что липопротеины очень низкой плотности (ЛОНП) высвобождаются из печени в кровоток. Хотя основным липидным компонентом ЛОНП являются триглицериды, содержащие мало холестерина, основная часть холестерина поступает из печени в кровь именно в составе ЛОНП.

Рис. 5.7. Обзор системы транспорта липопротеинов. Экзогенный путь: в желудочно-кишечном тракте пищевые жиры включаются в хиломикроны и через лимфатическую систему попадают в циркулирующую кровь. Свободные жирные кислоты (СЖК) поглощаются периферическими клетками (например, жировой и мышечной тканью); остатки (ремнанты) липопротеинов возвращаются в печень, где их холестериновая составляющая может транспортироваться обратно в ЖК тракт или использоваться в других метаболических процессах. Эндогенный путь: в печени синтезируются и поступают в кровь богатые триглицеридами липопротеины очень низкой плотности (ЛОНП), и их СЖК поглощаются и накапливаются в периферических жировых клетках и мышцах. Образующиеся в результате липопротеины промежуточной плотности (ЛПП) превращаются в липопротеины низкой плотности, основной циркулирующий липопротеин, осуществляющий транспорт холестерина. Большая часть ЛНП захватывается печенью и другими периферическими клетками путем рецептор-опосредованного эндоцитоза. Обратный транспорт холестерина, освобождаемого периферическими клетками, осуществляется липопротеинами высокой плотности (ЛВП), которые превращаются в ЛПП под действием циркулирующей лецитинхолестеринацилтрансферазы (ЛХАТ) и, наконец, возвращаются в печень. (Модифицировано из Brown MS, Goldstein JL. The hyperlipoproteinemias and other disorders of lipid metabolism. In: Wilson JE, et al., eds. Harrisons principles of internal medicine. 12th ed. New York: McGraw Hill, 1991:1816.)

Липопротеинлипаза мышечных клеток и жировой ткани отщепляет от ЛОНП свободные жирные кислоты, которые проникают в клетки, а циркулирующий остаток липопротеина, называемый ремнантным липопротеином промежуточной плотности (ЛПП), содержит в основном эфиры холестерина. Дальнейшие преобразования, которым ЛПП подвергается в крови, ведут к появлению богатых холестерином частиц липопротеинов низкой плотности (ЛНП). Приблизительно 75% циркулирующих ЛНП захватываются печенью и внепеченочными клетками благодаря наличию ЛНП-рецепторов. Остаток подвергается деградации отличными от классического ЛНП-рецепторного пути способами, в основном посредством моноцитарных клеток-мусорщиков.

Считается, что холестерин, поступающий в кровь из периферических тканей, транспортируется липопротеинами высокой плотности (ЛВП) в печень, где он вновь включается в липопротеины или секретируется в желчь (путь, включающий ЛПП и ЛНП, называется обратным транспортом холестерина). Таким образом, ЛВП, видимо, играет защитную роль в отношении отложения липидов в атеросклеротических бляшках. В крупных эпидемиологических исследованиях уровень циркулирующего ЛВП обратно коррелирует с развитием атеросклероза. Поэтому ЛВП часто называют хорошим холестерином в противоположность плохому холестерину ЛНП.

Недавно на основании различий в плотности и плавучести были идентифицированы подклассы ЛНП. Лица с более мелкими и плотными частицами ЛНП (свойство, определяемое как генетическими, так и внешними факторами) подвержены более высокому риску инфаркта миокарда, чем обладатели менее плотных разновидностей. Пока остается неясным, почему более плотные частицы ЛНП сопряжены с большим риском, однако это может быть связано с большей подверженностью плотных частиц окислению, ключевому моменту атерогенеза, о чем будет сказано ниже.

Возрастает число свидетельств того, что триглицериды сыворотки, в основном транспортирующиеся в составе ЛОНП и ЛПП, могут также играть важную роль в развитии атеросклеротических поражений. Пока не ясно, является ли это их прямым действием или объясняется тем, что уровень триглицеридов обычно находится в обратном соотношении с уровнем ЛВП. Сахарный диабет, начинающийся во взрослом возрасте, является одним из частых клинических состояний, ассоциированных с гипертриглицеридемией и низким уровнем ЛВП, а часто — и с ожирением и артериальной гипертензией. Этот набор факторов риска, который может быть связан с инсулинорезистентностью (обсуждается в главе 13), особенно атерогенен.

источник

В сутки в организме синтезируется около 1 г холестерина (рис.10). Основ­ное место синтеза – печень (до 80%), меньше синтезируется в кишечнике, коже и других тканях. С пищей поступает около 0,4 г холестерина, его источником является только пища животного происхождения. Холестерин необходим для построения всех мембран, в печени из него синтезируются желчные кислоты, в эндокринных железах – стероидные гормоны, в коже – витамин Д.

Сложный путь синтеза холестерина можно поделить на 3 этапа (рис.11). Первый этап заканчивается об­разованием мевалоновой кислоты. Источником для синтеза холестерина служит ацетил-КоА. Сна­чала из 3 молекул ацетил-КоА образуется ГМГ-КоА – общий предшественник в синтезе холесте­рина и кетоновых тел (однако реакции синтеза кетоновых тел происходят в митохондриях печени, а реакции синтеза холестерина – в цитозоле клеток). Затем ГМГ-КоА под действием ГМГ-КоА-редуктазы восстанавливается до мевалоновой кислоты с использованием 2 молекул НАДФН. Эта реакция является регуляторной в синтезе холестерина. Синтез холестерина тормозит сам холестерин, желчные кислоты и гормон голода глюкагон. Усиливается синтез холестерина при стрессе катехоламинами.

На втором этапе синтеза из 6 молекул мевалоновой кислоты образуется углеводород сквален, имеющий линейную структуру и состоящий из 30 атомов углерода.

На третьем этапе синтеза происходит циклизация углеводородной цепи и отщепление 3 атомов углерода, поэтому холестерин содержит 27 углеродных атомов. Холестерин является гидрофобной молекулой, поэтому транспортируется кровью только в составе разных липопротеинов.

Рис. 11 Синтез холестерина

Липопротеины – липид-белковые комплексы, предназначенные для транспорта нерастворимых в водных средах липидов по крови (рис.12). Снаружи липопротеины (ЛП) имеют гидрофильную оболочку, которая состоит из молекул белков и гидрофильных групп фосфолипидов. Внутри ЛП находятся гидрофобные части фосфолипидов, нерастворимые молекулы холестерина, его эфиров, молекулы жиров. ЛП делятся (по плотности и подвижности в электрическом поле) на 4 класса. Плотность ЛП определяется соотношением белков и липидов. Чем больше белка, тем больше плотность и тем меньше размер.

Рис.12. Строение липопротеидов

· 1 класс – хиломикроны (ХМ). Содержат 2% белка и 98% липидов, среди липидов преобладают экзогенные жиры, переносят экзогенные жиры от кишечника к органам и тканям, синтезируются в кишечнике, в крови присутствуют непостоянно – только после переваривания и всасывания жирной пищи.

· 2 класс – ЛП очень низкой плотности (ЛПОНП) или пре-b-ЛП. Белка в них 10%, липидов – 90%, среди липидов преобладают эндогенные жиры, транспортируют эндогенные жиры из печени в жировую ткань. Основное место синтеза – печень, небольшой вклад вносит тонкий кишечник.

· 3 класс – ЛП низкой плотности (ЛПНП) или b-ЛП. Белка в них 22% , липидов – 78%, среди липидов преобладает холестерин. Нагружают клетки холестерином, поэтому их на­зывают атерогенными, т.е. способствующими развитию атеросклероза (АС). Образуются непосредственно в плазме крови из ЛПОНП под действием фермента ЛП-липазы.

· 4 класс ЛП высокой плотности (ЛПВП) или a-ЛП. Белка и липидов содержат по 50%, среди липидов преобладают фосфолипиды и холестерин. Разгружают клетки от избытка холестерина, поэтому являются антиатерогенными, т.е. препятствующими развитию АС. Основное место их синтеза – печень, небольшой вклад вносит тонкий кишечник.

Печень является основнымместом синтеза холестерина. Холестерин, синтезированный в печени, упаковывается в ЛПОНП и в их составе секрети­руется в кровь. В крови на них действует ЛП-липаза, под влиянием которой ЛПОНП переходят в ЛПНП. Таким образом, ЛПНП становятся основной транспортной формой холестерина, в которой он доставляется к тканям. ЛПНП могут попадать в клетки двумя путями: рецепторным и нерецепторным захватом. Большинство клеток на своей поверхности имеют рецепторы к ЛПНП. Образовавшийся комплекс рецептор-ЛПНП эндоцитозом попадает внутрь клетки, где распадается на рецептор и ЛПНП. Из ЛПНП при участии лизосомальных ферментов освобождается холестерин. Этот холестерин используется для обновления мембран, тормозит синтез холестерина данной клеткой, а также, если количество холестерина, поступающего в клетку, превышает ее потребность, то подавляется и синтез рецепторов к ЛПНП.

Это уменьшает поток холестерина из крови в клетки, таким образом, клетки, для которых характерен рецепторный захват ЛПНП, имеют механизм, который ограждает их от избытка холестерина. Для гладкомышечных клеток сосудов и макрофагов характерен нерецепторный захват ЛПНП из крови. В эти клетки ЛПНП, а значит, и холестерин попадают диффузно, то есть, чем их больше в крови, тем больше их попадает в эти клетки. Эти разновидности клеток не имеют механизма, который ограждал бы их от избытка холестерина. В «обратном транспорте холестерина» от клеток участвуют ЛПВП. Они забирают избыток холестерина из клеток и возвращают его обратно в печень. Холестерин выводится с калом в виде желчных кислот, часть холестерина в составе желчи попадает в кишечник и также выводится с калом.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9070 — | 7214 — или читать все.

87.119.242.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Эндогенный путь начинается с того, что липопротеины очень низкой плотности (ЛОНП) высвобождаются из печени в кровоток. Хотя основным липидным компонентом ЛОНП являются триглицериды, содержащие мало холестерина, основная часть холестерина поступает из печени в кровь именно в составе ЛОНП.

Экзогенный путь: в желудочно-кишечном тракте пищевые жиры включаются в хиломикроны и через лимфатическую систему попадают в циркулирующую кровь. Свободные жирные кислоты (СЖК) поглощаются периферическими клетками (например, жировой и мышечной тканью); остатки (ремнанты) липопротеинов возвращаются в печень, где их холестериновая составляющая может транспортироваться обратно в ЖК тракт или использоваться в других метаболических процессах. Эндогенный путь: в печени синтезируются и поступают в кровь богатые триглицеридами липопротеины очень низкой плотности (ЛОНП), и их СЖК поглощаются и накапливаются в периферических жировых клетках и мышцах. Образующиеся в результате липопротеины промежуточной плотности (ЛПП) превращаются в липопротеины низкой плотности, основной циркулирующий липопротеин, осуществляющий транспорт холестерина. Большая часть ЛНП захватывается печенью и другими периферическими клетками путем рецептор-опосредованного эндоцитоза. Обратный транспорт холестерина, освобождаемого периферическими клетками, осуществляется липопротеинами высокой плотности (ЛВП), которые превращаются в ЛПП под действием циркулирующей лецитинхолестеринацилтрансферазы (ЛХАТ) и, наконец, возвращаются в печень. (Модифицировано из Brown MS, Goldstein JL. The hyperlipoproteinemias and other disorders of lipid metabolism. In: Wilson JE, et al., eds. Harrisons principles of internal medicine. 12th ed. New York: McGraw Hill, 1991:1816.)

Липопротеинлипаза мышечных клеток и жировой ткани отщепляет от ЛОНП свободные жирные кислоты, которые проникают в клетки, а циркулирующий остаток липопротеина, называемый ремнантным липопротеином промежуточной плотности (ЛПП), содержит в основном эфиры холестерина. Дальнейшие преобразования, которым ЛПП подвергается в крови, ведут к появлению богатых холестерином частиц липопротеинов низкой плотности (ЛНП).

Считается, что холестерин, поступающий в кровь из периферических тканей, транспортируется липопротеинами высокой плотности (ЛВП) в печень, где он вновь включается в липопротеины или секретируется в желчь (путь, включающий ЛПП и ЛНП, называется обратным транспортом холестерина). Таким образом, ЛВП, видимо, играет защитную роль в отношении отложения липидов в атеросклеротических бляшках. В крупных эпидемиологических исследованиях уровень циркулирующего ЛВП обратно коррелирует с развитием атеросклероза. Поэтому ЛВП часто называют хорошим холестерином в противоположность плохому холестерину ЛНП.

1) Фракция альфа -1- глобулинов Основными компонентами данной фракции являются альфа-1-антитрипсин, альфа -1- липопротеид, кислый альфа-1-гликопротеид. 2) Фракция альфа -2- глобулинов Эта фракция содержит альфа-2-макроглобулин, гаптоглобин, аполипопротеины А,В,С, церулоплазмин. 3) Фракция бета-глобулинов Бета фракция содержит трансферрин, гемопексин, компоненты комплимента, иммуноглобулины и липопротеиды. 4) Фракция гамма-глобулинов В состав этой группы входят иммуноглобулины M, G, A, D, E.

Показания к назначению анализа: 1. Острые и хронические инфекционные заболевания 2. Онкопатологии 3. Аутоиммунные патологии Повышение уровня: — альфа -1- глобулины. Наблюдается при острых, подострых и обострении хронических воспалительных процессов; поражении печени; всех процессах тканевого распада или клеточной пролиферации. — альфа -2- глобулины. Наблюдается при всех видах острых воспалительных процессов, особенно с выраженным экссудативным и гнойным характером (пневмония, эмпиема плевры и др.) ; заболеваниях, связанных с вовлечением в патологический процесс соединительной ткани ( коллагенозы, ревматоидные заболевания); злокачественных новообразованиях; в стадии восстановления после термических ожогов; нефротическом синдроме — бета-глобулины. Выявляют при первичных и вторичных гиперлипопротеидемиях, заболеваниях печени, нефротическом синдроме, кровоточащей язве желудка, гипотиреозе. — гамма-глобулины. Гамма-глобулины повышены — такое состояние отмечается при реакции системы иммунитета, когда происходит выработка антител и аутоантител; при вирусных и бактериальных инфекциях, воспалении, коллагенозах, деструкции тканей и ожогах. Также повышение гаммаглобулинов сопровождает системную красную волчанку, хронический лимфолейкоз, эндотелиомы, остеосаркомы, кандидамикоз. Снижение уровня: — альфа -1- глобулины. Наблюдается при дефиците альфа-1-антитрипсина. — альфа -2- глобулины. Наблюдается при сахарном диабете, панкреатитах, врожденной желтухе новорожденных, токсических гепатитах. — бета-глобулины. Встречается редко и обычно обусловлено общим дефицитом белков плазмы. — гамма-глобулины. Уменьшение содержания гамма-глобулинов бывает первичным и вторичным. Различают три основных вида первичных гипогаммаглобулинемий: физиологическую ( у детей в возрасте 3-5 мес.), врожденную и идиопатическую. Причинами вторичных гипогаммаглобулинемий могут быть многочисленные заболевания и состояния , приводящие к истощению иммунной системы. Анализы в лаборатории «ЛИТЕХ»: Метод исследования: колориметрический электрофорез Материал для исследования: сыворотка в одноразовой пластиковой пробирке с завинчивающейся крышкой. Хранить не более суток. Подготовка к исследованию: натощак

Разделение на фракции основано на разной подвижности белков в разделяющей среде под действием электрического поля

Парапротеинемия — появление на электрофореграмме дополнительной дискретной полосы, говорящей о присутствии в большом количестве однородного (моноклонального) белка — обычно иммуноглобулинов или отдельных компонентов их молекул, синтезирующихся в В-лимфоцитах.

Ультрацентрифугирование представляет собой метод, позволяющий получать однозначные результаты путем разделения липопротеинов в зависимости от их плотности. При ультрацентрифугировании происходит седиментация ЛПВП вместе с другими белками плазмы. Липопротеины низкой плотности обнаруживают тенденцию к флотации. Скорость флотации выражают в единицах Sf (флотация по Сведбергу). Чем выше соотношение липид: белок, тем ниже плотность липопротеина и тем выше число Sf. Электрофорез позволяет разделять липопротеины в зависимости от величины электрического заряда их апопротеинов. Этот метод более доступен, чем ультрацентрифугирование. Хотя в данной главе мы не пользуемся электрофоретической номенклатурой, она отражена в названиях ряда патологических состояний, которые будут рассмотрены ниже. Путем электрофореза липопротеины удается разделить на альфа (ЛПВП), бета (ЛПНП), пребета (ЛПОНП) и хиломикроновую фракции. В присутствии избытка ЛППП полоса, соответствующая бетафракции, может расширяться. Простая методика преципитации позволяет отделить ЛПВП от других липопротеинов, после чего можно дифференцировать холестерин, связанный с ЛПВП и с ЛПНП.

источник

Ключевой регуляторный фермент — ГМГ-КоА-редуктаза, активность которого в печени регулируется трояким способом :

• на уровне транскрипции гена ГМГ-КоА-редуктазы. Корепрессорами процесса, снижающими скорость синтеза фермента, являются холестерол, желчные кислоты и кортикостероидные гормоны, а индукторами — инсулин и тиреоидные гормоны — Т3 и Т 4 ;

• путем фосфорилирования и дефосфорилирования, которое также регулируется гормонами. Дефосфорилирование стимулирует инсулин, который за счет активации протеинфосфатазы переводит фермент в дефосфорилированную активную форму, а глюкагон через аденилатциклазную систему обеспечивает механизм его фосфорилирования и инактивации;

• уменьшением количества фермента за счет протеолиза молекул, который стимулируют холестерол и желчные кислоты. Часть вновь синтезированного холестерола этерифицируется с образованием эфиров. Эту реакцию , как и в энтероцитах, катализирует АХАТ, присоединяя к холестеролу остатки линолевой или олеиновой кислот.

В транспорте холестерола и его эфиров по крови участвуют все липопротеины. Так, хиломикроны переносят холестерол из кишечника через кровь в печень в составе ХМост. В печени холестерол вместе с эндогенными жирами и фосфолипидами упаковывается в ЛПОНП и секретируется в кровь. В кровотоке ЛПОНП незрелые получают от ЛПВП мембранные белки АпоС II и АпоЕ и становятся зрелыми, т.е. способными взаимодействовать с ЛП-липазой, которая гидролизует ТАГ в составе ЛПОНП до ВЖК и глицерола. Частицы, теряя жиры, уменьшаются в размере, но возрастают по плотности и превращаются сначала в ЛППП, а затем в ЛПНП.

Холестерин в крови содержится в следующих формах:

— холестерин липопротеинов низкой плотности (ЛПНП)

— холестерин липопротеидов высокой плотности (ЛПВП)

Холестерин ЛПНП — это основная транспортная форма общего холестерина. Он переносит общий холестерин в ткани и органы. На ЛППП, оставшиеся в крови, продолжает действовать ЛП-липаза, и они превращаются в ЛПНП, содержащие до 55% холестерола и его эфиров. Апопротеины Е и С-II реносятся обратно в ЛПВП. Поэтому основным апопротеином в ЛПНП служит апоВ-100. Апопротеин В-100 взаимодействует с рецепторами ЛПНП и таким образом определяет дальнейший путь холестерола. ЛПНП — основная транспортная форма холестерола, в которой он доставляется в ткани. Около 70% холестерола и его эфиров в крови находится в составе ЛПНП. Из крови ЛПНП поступают в печень (до 75%) и другие ткани, которые имеют на своей поверхности рецепторы ЛПНП.Определение холестерина ЛПНП проводят для того, чтобы выявить повышение холестерина в крови. При развитии сосудистых заболеваний именно холестерин ЛПНП — источник накопления холестерина в стенках сосудов. Риск развития атеросклероза и ишемической болезни сердца более тесно связан с холестерином ЛПНП, чем с общим холестерином.

Холестерин ЛПВП осуществляет транспорт жиров и холестерола от одной группы клеток к другой. Так холестерин ЛПВП переносит холестерин из сосудов сердца, сердечной мышцы, артерий мозга и других периферических органов в печень, где из холестерина образуется желчь. Холестерин ЛПВП удаляет излишки холестерина из клеток организма. ЛПВП выполняют 2 основные функции: они поставляют апопротеины другим ЛП в крови и участвуют в так называемом «обратном транспорте холестерола». ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечнике в виде «незрелых липопротеинов» — предшественников ЛПВП. Они имеют дисковидную форму, небольшой размер и содержат высокий процент белков и фосфолипидов. В печени в ЛПВП включаются апопротеины А, Е, С-II, фермент ЛХАТ. В крови апоС-II и апоЕ переносятся с ЛПВП на ХМ и ЛПОНП. Предшественники ЛПВП пракгически не содержат холестерола и ТАГ и в крови обогащаются холестеролом, получая его из других ЛП и мембран клеток.

( в вопросе ничего не сказана про мех-мы, поэтому думаю этого достаточно)

источник

2. При электрофорезе белков плазмы крови липопротеины высокой плотности находятся во фракции

3. Свободные жирные кислоты транспортирует белок плазмы крови

4. Супероксиддисмутазной активностью обладает

А. появление в плазме крови белков, отсутствующих в норме

Б. уменьшение концентрации паратгормона в плазме крови

В. увеличение концентрации паратгормона в плазме крови

Г. уменьшение концентрации глобулинов в плазме крови

Д. увеличение концентрации глобулинов в плазме крови

6. Транспорт железа осуществляет белок плазмы крови

7. Белком, транспортирующим железо в плазме крови является

8. Транспорт меди осуществляет белок плазмы крови

9. Увеличение активности амилазы и липазы в сыворотке крови характерны для поражения клеток

10. Увеличение активности креатинкиназы, ЛДГ1, ЛДГ2 в сыворотке крови характерны для поражения клеток:

11. Концентрация кальция в крови увеличивается под действием

12. Концентрация кальция в крови увеличивается под действием

13. Концентрация кальция в крови уменьшается под действием

16. Основным небелковым азотсодержащим компонентом крови является:

17. Основным компонентом остаточного азота крови является

18. НАДФН2 в эритроцитах используется главным образом для

А. поддержания внутриклеточных тиолов в восстановленном состоянии

Б. восстановительных реакций в ходе синтеза холестерола

В. восстановительных реакций в ходе синтеза жирных кислот

Г. восстановления пирувата в лактат

19. В эритроцитах АТФ образуется главным образом в ходе

В. окисления глюкозы в пентозном цикле

Г. окислительного фосфорилирования

Д. бета-окисления жирных кислот

20. Аденозинтрифосфат в зрелых эритроцитах используется главным образом для

А. обеспечения энергией процессов синтеза гема

Б. обеспечения энергией процессов синтеза глобина

В. обеспечения энергией процессов синтеза жирных кислот

Г. обеспечения энергией процесса присоединения кислорода к гемоглобину

Д. обеспечения деятельности Na + -K + -зависимой АТФазы

21. Карбоксиглутаминовая кислота присутствует в составе фактора свертывания крови

22. Фактором свертывания крови является

24. Фибриноген превращается в фибрин путем

Выберите несколько правильных ответов

25. Карбоксиглутаминовая кислота присутствует в составе факторов свертывания крови

26. Транспортными формами аммиака в крови являются аминокислоты:

27. Причиной гиперпротеинемии может быть

А. потеря организмом воды при неукротимой рвоте

Б. поступление в кровь белков острой фазы воспаления

В. потеря воды при диаррее

Г. увеличение синтеза иммуноглобулинов при инфекционных заболеваниях

Д. появление в крови патологических белков

28. Причиной гипопротеинемии может быть

А. потеря организмом воды при неукротимой рвоте

Б. потеря белка с мочой при заболеваниях почек

В. нарушение синтеза белков плазмы крови при заболеваниях печени

Г. задержка воды в организме

Д. распад белков плазмы при голодании

29. Снижение содержания альбумина в крови может наблюдаться при

В. поражении клеток печени

30. Альбумин принимает участие в связывании и транспорте

Г. гидрофобных ксенобиотиков

31. Повышение активности ферментов в плазме крови при патологических состояниях происходит вследствие:

А. увеличения проницаемости мембран клеток повреждённых тканей

Б. выхода фермента в кровь из разрушенных клеток

В. снижения активности ферментов в повреждённых тканях

Г. замедления синтеза ферментов в повреждённых тканях

1. (4) Перечислите основные метаболические функции печени.

2. (4) Напишите реакцию образования глюкозы из глюкозо-6-фосфата, укажите фермент. Перечислите пути образования глюкозы в печени, назовите их физиологическую роль.

3. (4) Напишите реакцию образования глюкозо-1-фосфата из гликогена, укажите фермент. Перечислите гормоны, регулирующие скорость этой реакции.

4. (4) Представьте в виде схемы пути использования глюкозы в печени, укажите значение каждого процесса.

5. (4) Представьте в виде схемы обмен гликогена в печени. Назовите гомоны, контролирующие скорость процессов.

6. (4) Напишите реакцию образования глюкозо-6-фосфата из глюкозы, назовите фермент и гормон, индуцирующий его синтез в гепатоцитах.

7. (4) Перечислите основные пути использования фонда аминокислот в печени. Укажите, как может использоваться углеродный скелет аминокислот в печению

8. (4) Напишите реакцию, катализируемую глутаматдегидрогеназой.Укажите дальнейшие пути использования образовавшихся продуктов в печени.

9. (4) Напишите реакцию, катализируемую аланинаминотрансферазой. Укажите дальнейшие пути использования образовавшихся продуктов.

10. (4) Напишите реакцию, катализируемую аспартатаминотрансферазой. Укажите дальнейшие пути использования образовавшихся продуктов.

11. (4) Укажите источники глутамина и аспарагина в печени. Напишите реакции гидролиза глутамина и аспарагина. Укажите дальнейшие пути использования образовавшихся продуктов

12. (4) Приведите примеры белков плазмы крови, синтезируемых в гепатоцитах. Укажите их биологическую роль.

13. (4) Напишите реакцию образования мевалоновой кислоты из -гидрокси--метил-глутарил-КоА, укажите фермент. Объясните, как и почему изменится скорость этой реакции при избытке холестерола в пище.

14. (4) Представьте в виде схемы пути образования и использования ацетил-КоА в печени, укажите их внутриклеточную локализацию.

15. (4) Представьте в виде схемы источники и пути использования жирных кислот в печени. Укажите внутриклеточную локализацию процессов.

16. (4) Напишите реакции образования -гидрокси--метил-глутарил-КоА из ацетил КоА. Перечислите пути использования этого метаболита в печени.

17 (4) Представьте в виде схемы синтез ацетоацетата в клетках печени. Назовите состояния, сопровождающиеся усилением кетогенеза.

18. (4) Перечислите желчные кислоты, синтезируемые в печени и их возможные конъюгаты. Охарактеризуйте биологическую роль желчных кислот.

19. (4) Назовите основные стадии (фазы) обезвреживания токсичных продуктов в печени, укажите сущность реакций.

20. (4) Напишите реакцию катализируемую алкогольдегидрогеназой. Представьте в виде схемы распад этанола до углекислого газа и воды. Объясните, как и почему изменится скорость глюконеогенеза в печени при приеме большого количества этанола.

источник

Триацилглицерины синтезируются во многих органах и тканях, но наиболее важную роль в их синтезе играют печень, стенка кишечника, лактирующая молочная железа и жировая ткань. Для синтеза необходима активная форма глицерина – a-глицерофосфат и активная форма жирной кислоты – ацил-КоА. Активация глицерина может происходить двумя способами:1. В стенке кишечника и почках, печени есть активная глицерол-

2. В жировой ткани и мышцах активность этого фермента очень

низкая и образование a-глицерофосфата связано с гликолизом:

a-Глицерофосфат, образованный любым из этих путей, взаимо-

действует с двумя молекулами активированных жирных кислот (ацил-

КоА) с образованием фосфатидной кислоты:

6. Синтез глицерофосфолипидов

Биосинтез глицерофосфолипидов наиболее интенсивно происходит в печени, стенке кишечника, семенниках, молочной железе. Реакции синтеза локализованы в эндоплазматической сети. Синтез до образования фосфатидной кислоты происходит также, как и синтез триацилглицеринов.

14. Обмен и функции холестерина. Прямой и обратный транспорт хо-лестерина. Биосинтез холестерина: химизм, регуляция.

Обмен холестерина. Транспорт холестерина

Функции холестерина: 1) входит в состав клеточных мембран, 2) из него образуются другие физиологически важные соединения: желчные кислоты, кортикостероидные и половые гормоны, витамин Д. Условно в организме человека можно выделить три пула холестерина:

А – быстрообменивающийся (около 30 г холестерина);

В – медленнообменивающийся (около 50 г холестерина);

С – очень медленнообменивающийся (около 60 г холестерина).

К первому пулу А следует отнести холестерин печени и других паренхиматозных органов, а также холестерин кишечной стенки и плазмы крови. Обновление холестерина этого пула происходит в среднем за 30 сут (1 г/сут). К третьему пулу (пул С) можно отнести холестерин головного и спинного мозга, нервов и холестерин соединительной ткани. Скорость обновления холестерина в белом веществе мозга исчисляется годами. Холестерин остальных органов и тканей составляет промежуточный медленнообменивающийся пул В. За сутки в организме человека около 500 мг холестерина окисляется в желчные кислоты, примерно такое же количество экскретируется с фекалиями, около 100 мг удаляется со слущивающимся эпителием кожи и секретом сальных желез и менее 100 мг используется на образование стероидных (половых и кортикоидных) гормонов. Таким образом, ежесуточный расход холестерина составляет около 1,2 г, и он черпается из быстрообменивающегося пула А. Для того, чтобы восполнить эту потерю, организм синтезирует в сутки около 800 мг холестерина и примерно 400 мг получает с пищей.

Прямой транспорт холестерина Это транспорт холестерина в клетку в составе ЛПНП. Основное место синтеза холестерина – печень, в остальные органы и ткани он поступает в составе ЛПНП. В 1985 году американцы Браун и Гольдстейн за раскрытие механизма захвата ЛПНП клетками получили Нобелевскую премию. Они открыли на поверхности клеток рецепторы, высокоспецифичные к апопротеину В, а это – основной белок ЛПНП. Поступление холестерина в клетку включает следующие этапы: 1. Связывание ЛПНП с рецепторами. 2. Эндоцитоз комплекса ЛПНП – рецептор в клетку. 3. Расщепление лизосомальными ферментами апоВ до аминокислот, эфиров холестерина до холестерина и жирной кислоты. 4. Возвращение молекулы рецептора на поверхность клетки.

Поступивший холестерин клетка использует для построения мембран. Такой рецепторно-опосредованный путь поступления холестерина в клетку предохраняет ее от перегрузки холестерином, т.к.: 1) ингибируется фермент синтеза холестерина – ГМГ-КоА-редуктаза; 2) подавляется синтез рецепторов для ЛПНП. 3) активируется ацил-КоАхолестеринацилтрансфераза (АХАТ), которая переводит свободный холестерин в запасную форму – эфиры холестерина; Нерегулируемые пути поступления холестерина в клетку: 1) неспецифический эндоцитоз через скэвенджер рецепторы; 2) рецепторный путь с помощью рецепторов, не имеющих высокой специфичности к отдельным апопротеинам; 3) путь физико-химического обмена холестерином между мембраной клетки и ЛПНП. Эти пути транспорта холестерина могут привести к накоплению холестерина в клетке. Обратный транспорт холестерина Это транспорт холестерина из клеток периферических тканей (в том числе и из сосудистой стенки) в составе ЛПВП в печень. ЛПВП синтезируются в печени в виде дисков, богатых лецитином и апопротеинами АI, АII (насцентные ЛПВП). Кроме того, подобные частицы образуются в капиллярах во время липолиза ХМ и ЛПОНП. Перенос холестерина из клеток на дисковидные частицы ЛПВП (насцентные ЛПВП) происходит по градиенту концентрации. При контакте ЛПВП с клеткой апоАI связывает свободный холестерин мембраны клетки. Фермент лецитинхолестеринацилтрансфераза (ЛХАТ), находящийся на поверхности ЛПВП, присоединяет остаток жирной кислоты из лецитина (в составе ЛПВП) к свободному холестерину. Образуется гидрофобная молекула эфира холестерина, которая перемещается в центр диска ЛПВП. При этом освобождаются участки поверхности апоАI для связывания новых молекул свободного холестерина из мембраны клетки. Вновь происходит эстерификация холестерина, в результате частица ЛПВП из диска превращается в сферическую молекулу и в такой форме захватывается рецепторным путем печенью. В печени холестерин, поступивший в составе ЛПВП, используется для биосинтеза желчных кислот и в конечном итоге выводится из организма. Вывод: холестерин в клетку поступает с ЛПНП (прямой транспорт), а удаляется с ЛПВП – обратный транспорт холестерина.

Ланостерин превращается в мембранах гладкого эндоплазматического ретикулума в холестерин. Метильная группа при С14 окисляется, и образуется 14-десметилланостерин.

2. Затем удаляются ещё два метила при С4, и образуется зимостерол.

3. Далее двойная связь C8=С9 перемещается в положение С8=С7 и образуется Δ7,24-холестадиенол.

4. Двойная связь далее перемещается в положение С5=С6,образуется десмостерол.

5. После чего в боковой цепи восстанавливается двойная связь, и образуется холестерин.

(Восстановление двойной связи в боковой цепи может, однако, происходить и на предшествующих стадиях биосинтеза холестерола.)

источник

Простагландины синтезируются у человека из кислоты

Арахидоновой

Восстановленный НАДФ для биосинтеза жирных кислот и холестерина

Поставляется в основном за счет

4. дезаминирования аминокислот

Пентозфосфатного пути окисления глюкозы

Повышенное образование кетоновых тел происходит в результате

1. увеличения уровня ацетил-КоА в скелетной мышце

Существенного повышения скорости окисления

жирных кислот в печени

3. ускорения глюконеогенеза

4. снижения уровня циклической АМФ в адипоцитах

5. увеличения скорости цикла Кребса

Из холестерина в организме человека не могут образоваться

Желчные пигменты

Катехоламины

Энтерокиназа обнаружена в

В обезвреживании аммиака участвуют аминокислоты

Аспарагиновая кислота

Глутаминовая кислота

Кофермент глутаматдегидрогеназы в реакции образования

Некоторые заболевания характеризуются стойким увеличением

Содержания аммиака в крови. Прием какой аминокислоты

Может помочь таким больным?

Глутаминовой кислоты

Врожденный дефект синтеза фермента

Гомогентизинат-1,2-диоксигеназы вызывает

Алкаптонурию

В синтезе креатина участвуют

Суточное выделение креатинина с мочой

Процесс трансаминирования аминокислот

1. обеспечивает синтез биогенных аминов

Происходит при участии пиридоксальфосфата

Обеспечивает образование заменимых аминокислот

4. сопровождается образованием аммиака

5. приводит к увеличению общего количества аминокислот

В орнитиновом цикле участвуют

К смешанным (гликогенным и кетогенным) аминокислотам относятся

Фенилаланин

ТГФК участвует в синтезе

Серина из глицина

3. тирозина из фенилаланина

4. глутаминовой кислоты из гистидина

Процессу трансаминирования не подвергаются

Лизин и треонин

Кофермент монооксигеназ

Тетрагидробиоптерин

Аммиак в клетках мозга обезвреживается путем

2. образования солей аммония

Превращения глутамата в глутамин

Кофермент большинства декарбоксилаз аминокислот

Гистидаза относится к классу

Скатол и индол обезвреживаются в печени с помощью

1. 3′-фосфоаденозин-5′-фосфосульфата

Уридиндифосфоглюкуроновой кислоты

Пиридоксальфосфат (ПФ) — кофермент

Аланинаминотрансферазы

Аспартатаминотрансферазы

Метаболиты цикла Кребса, участвующие в реакциях трансаминирования

Альфа-кетоглутарат

Оксалоацетат

Гамма-аминомасляная кислота образуется из

Глутаминовой кислоты

Суточное выведение мочевины с мочой в норме

Глицин может образоваться из

Альбинизм связан с нарушением обмена

Оксид азота (NO) образуется из

Коферментом оксидаз L-аминокислот может быть

Активность аспартатаминотрансферазы в сыворотке крови резко повышается при

Инфаркте миокарда

Соляная кислота в желудке

Денатурирует белки

Оказывает бактерицидное действие

Активирует пепсиноген

Создает оптимум рН для пепсина

Кофермент моноаминоксидазы (МАО)

Квашиоркор наблюдается у детей при недостатке в пище

Источником образования таурина является

Строго кетогенной аминокислотой считается

При гнилостном распаде фенилаланина в кишечнике образуются

Алкаптонурия — врожденный дефект обмена

Биосинтез мочевины происходит в

Суточная потребность белка у человека составляет примерно

Коферментом дезаминирования аминокислот не может быть

В процессе восстановительного аминирования a-кетоглутаровой кислоты участвует

Серотонин — продукт декарбоксилирования

Окситриптофана

Фенилкетонурия возникает в результате врожденного отсутствия

Оксидоредуктаз

Строго кетогенная аминокислота

Аргиназа участвует в синтезе

источник

Транспорт холестерола и его эфиров осуществляется липопротеинами низкой и высокой плотности.

  • образуются в печениde novo, в плазме крови при распаде хиломикронов, некоторое количество в стенке кишечника,
  • в составе частицы примерно половину занимают белки, еще четверть фосфолипиды, остальное холестерин и ТАГ (50% белка, 25% ФЛ, 7% ТАГ, 13% эфиров ХС, 5% свободного ХС),
  • основным апобелком является апо А1, содержат апоЕ и апоСII.
  1. Транспорт свободного ХС от тканей к печени.
  2. Фосфолипиды ЛПВП являются источником полиеновых кислот для синтеза клеточных фосфолипидов и эйкозаноидов.

1. Синтезированный в печени ЛПВП (насцентный или первичный) содержит в основном фосфолипиды и апобелки. Остальные липидные компоненты накапливаются в нем по мере метаболизма в плазме крови.

2-3. В плазме крови насцентный ЛПВП сначала превращается в ЛПВП3 (условно его можно назвать «зрелый»). В этом превращении главным является то, что ЛПВП

  • забирает от клеточных мембран свободный холестерин при непосредственном контакте или при участии специфических транспортных белков,
  • взаимодействуя с мембранами клеток, отдает им часть фосфолипидов из своей оболочки, доставляя таким образом полиеновые жирные кислоты в клетки,
  • тесно взаимодействует с ЛПНП и ЛПОНП, получая от них свободный холестерин. В обмен ЛПВП3 отдают эфиры ХС, образованные благодаря переносу жирной кислоты от фосфатидилхолина (ФХ) на холестерин (ЛХАТ-реакция, см п.4).

4. Внутри ЛПВП активно протекает реакция при участии лецитин:холестерол-ацилтрансферазы (ЛХАТ-реакция). В этой реакции остаток полиненасыщенной жирной кислоты переносится от фосфатидилхолина (из оболочки самого ЛПВП) на получаемый свободный холестерин с образованием лизофосфатидилхолина (лизоФХ) и эфиров ХС. ЛизоФХ остается внутри ЛПВП, эфир холестерина отправляется в ЛПНП.

5. В результате первичный ЛПВП постепенно, через зрелую форму ЛПВП3, преобразуется в ЛПВП2 (остаточный, ремнантный). При этом происходят и дополнительные события:

  • взаимодействуя с разными формами ЛПОНП и ХМ, ЛПВП получают ацил-глицеролы (МАГ, ДАГ, ТАГ), и обмениваются холестерином и его эфирами,
  • ЛПВП отдают апоЕ- и апоСII-белки на первичные формы ЛПОНП и ХМ, и потом забирают обратно апоСII-белки от остаточных форм.

Таким образом, при метаболизме ЛПВП в нем происходит накопление свободного ХС, МАГ, ДАГ, ТАГ, лизоФХ и утрата фосфолипидной оболочки. Функциональные способности ЛПВП снижаются.

6. Далее ЛПВП2 захватывается гепатоцитами при помощи апоА-1-рецептора, происходит эндоцитоз и частица разрушается.

Транспорт холестерола и его эфиров в организме
(цифры соответствуют пунктам метаболизма ЛПВП по тексту)
  • образуются в гепатоцитах de novo и в сосудистой системе печени под воздействием печеночной ТАГ-липазы из ЛПОНП,
  • в составе преобладают холестерол и его эфиры, другую половину массы делят белки и фосфолипиды (38% эфиров ХС, 8% свободного ХС, 25% белки, 22% фосфолипидов, 7% триацилглицеролов),
  • основным апобелком является апоВ-100,
  • нормальное содержание в крови 3,2-4,5 г/л,
  • самые атерогенные.

1. Транспорт холестерола в клетки, использующих его

  • для реакций синтеза половых гормонов (половые железы), глюкокортикоидов и минералокортикоидов (кора надпочечников),
  • для превращения в холекальциферол (кожа),
  • для образования желчных кислот (печень),
  • для выведения в составе желчи (печень).

2. Транспорт полиеновых жирных кислот в виде эфиров ХС в некоторые клетки рыхлой соединительной ткани (фибробласты, тромбоциты, эндотелий, гладкомышечные клетки), в эпителий гломерулярной мембраны почек, в клетки костного мозга, в клетки роговицы глаз, в нейроциты, в базофилы аденогипофиза.

Клетки рыхлой соединительной ткани активно синтезируют эйкозаноиды . Поэтому им необходим постоянный приток полиненасыщенных жирных кислот (ПНЖК), что осуществляется через апо-В-100-рецептор, т.е. регулируемым поглощением ЛПНП, которые несут ПНЖК в составе эфиров холестерола.

Особенностью клеток, поглощающих ЛПНП, является наличие лизосомальных кислых гидролаз , расщепляющих эфиры ХС. У других клеток таких ферментов нет.

Иллюстрацией значимости транспорта ПНЖК в указанные клетки служит ингибирование салицилатами фермента циклооксигеназы, образующей эйкозаноиды из ПНЖК. Салицилаты успешно применяются в кардиологии для подавления синтеза тромбоксанов и снижения тромбообразования, при лихорадке, как жаропонижающее средство за счет расслабления гладких мышц сосудов кожи и повышения теплоотдачи. Однако одним из побочных эффектов тех же салицилатов является подавление синтеза простагландинов в почках и снижение почечного кровобращения.

Также в мембраны всех клеток, как сказано выше (см «Метаболизм ЛПВП»), ПНЖК могут переходить в составе фосфолипидов от оболочки ЛПВП.

1. В крови первичные ЛПНП взаимодействуют с ЛПВП, отдавая свободный ХС и получая этерифицированный. В результате в них происходит накопление эфиров ХС, увеличение гидрофобного ядра и «выталкивание» белка апоВ-100 на поверхность частицы. Таким образом, первичный ЛПНП переходит в зрелый.

2. На всех клетках, использующих ЛПНП, имеется высокоафинный рецептор, специфичный к ЛПНП – апоВ-100-рецептор. Около 50% ЛПНП взаимодействует с апоВ-100-рецепторами разных тканей и примерно столько же поглощается гепатоцитами.

3. При взаимодействии ЛПНП с рецептором происходит эндоцитоз липопротеина и его лизосомальный распад на составные части – фосфолипиды, белки (и далее до аминокислот), глицерол, жирные кислоты, холестерол и его эфиры.

    • ХС превращается в гормоны или включается в состав мембран,
    • излишки мембранного ХС удаляются с помощью ЛПВП,
    • принесенные с эфирами ХС ПНЖК используются для синтеза эйкозаноидов или фосфолипидов.
    • при невозможности удалить ХС часть его этерифицируется с олеиновой или линолевой кислотами ферментом ацил-SКоА:холестерол-ацилтрансферазой (АХАТ-реакция),

На количество апоВ-100-рецепторов влияют гормоны:

  • инсулин, тиреоидные и половые гормоны стимулируют синтез этих рецепторов,
  • глюкокортикоиды уменьшают их количество.

источник

Нарушение жирового обмена является основным фактором развития атеросклероза и связанных с ним осложнений (ишемическая болезнь сердца, инфаркт, инсульт, облитерация сосудов нижних конечностей и пр.). При этом наиболее важным фактором повышенного риска атеросклероза является повышение содержания в крови атерогенных липопротеинов.

Статья на конкурс «био/мол/текст»: Вряд ли сейчас найдется человек, который не слышал, что высокий холестерин — это плохо. Однако столь же мала вероятность встретить человека, который знает, ПОЧЕМУ высокий холестерин — это плохо. И чем определяется высокий холестерин. И что такое высокий холестерин. И что такое холестерин вообще, зачем он нужен и откуда берется.

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2012 в номинации «Лучший обзор».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific.

Итак, история вопроса такова. Давным-давно, в одна тысяча девятьсот тринадцатом году, петербуржский физиолог Аничков Николай Александрович показал: не что иное, как холестерин, вызывает атеросклероз у экспериментальных кроликов, содержащихся на пище животного происхождения [1]. Вообще же, холестерин необходим для нормального функционирования животных клеток и является основной составляющей клеточных мембран , а также служит субстратом для синтеза стероидных гормонов и желчных кислот.

Довольно подробно о роли холестерина в работе биомембран рассказывается в статье «Липидный фундамент жизни» [12]. — Ред.

Главный липидный компонент пищевого жира и жировых отложений — это триглицериды, которые представляют собой эфиры глицерина и жирных кислот. Холестерин и триглицериды, будучи неполярными липидными веществами, транспортируются в плазме крови в составе липопротеиновых частиц. Частицы эти подразделяют по размеру, плотности, относительному содержанию холестерина, триглицеридов и белков на пять больших классов: хиломикроны, липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП) [2]. Традиционно ЛПНП считается «плохим» холестерином, а ЛПВП — «хорошим» (рис. 1).

Рисунок 1. «Плохой» и «хороший» холестерины. Участие различных липопротеиновых частиц в транспорте липидов и холестерина.

Схематично структура липопротеина включает неполярное ядро, состоящее по большей части из холестерина и триглицеридов, и оболочку из фосфолипидов и апопротеинов (рис. 2). Ядро — функциональный груз, который доставляется до места назначения. Оболочка же участвует в распознавании клеточными рецепторами липопротеиновых частиц, а также в обмене липидными частями между различными липопротеинами [3].

Рисунок 2. Схематическое строение липопротеиновой частицы

Баланс уровня холестерина в организме достигается следующими процессами: внутриклеточный синтез, захват из плазмы (главным образом из ЛПНП), выход из клетки в плазму (главным образом в составе ЛПВП). Предшественник синтеза стероидов — ацетил коэнзим А (CoA). Процесс синтеза включает, по крайней мере, 21 шаг, начиная с последовательного преобразования ацетоацетил CoA. Лимитирующая стадия синтеза холестерина в большой степени определяется количеством холестерина, абсорбируемого в кишечнике и транспортируемого в печень [4]. При недостатке холестерина происходит компенсаторное усиление его захвата и синтеза.

Систему транспорта липидов можно разделить на две большие части: внешнюю и внутреннюю.

Внешний путь начинается с всасывания в кишечнике холестерина и триглицеридов. Его конечный результат — доставка триглицеридов в жировую ткань и мышцы, а холестерина — в печень. В кишечнике пищевой холестерин и триглицериды связываются с апопротеинами и фосфолипидами, формируя хиломикроны, которые через лимфоток попадают в плазму, мышечную и жировую ткани. Здесь хиломикроны взаимодействуют с липопротеинлипазой — ферментом, который освобождает жирные кислоты. Эти жирные кислоты поступают в жировую и мышечную ткани для накопления и окисления соответственно. После изъятия триглицеридного ядра остаточные хиломикроны содержат большое количество холестерина и апопротеина Е. Апопротеин Е специфически связывается со своим рецептором в клетках печени, после чего остаточный хиломикрон захватывается и катаболизируется в лизосомах. В результате этого процесса освобождается холестерин, который затем преобразуется в желчные кислоты и выводится или участвует в формировании новых липопротеинов, образующихся в печени (ЛПОНП). При нормальных условиях хиломикроны находятся в плазме в течение 1–5 ч. после приема пищи [2], [3].

Внутренний путь. Печень постоянно синтезирует триглицериды, утилизируя свободные жирные кислоты и углеводы. В составе липидного ядра ЛПОНП они выходят в кровь. Внутриклеточный процесс формирования этих частиц схож с таковым для хиломикронов, за исключением различия в апопротеинах. Последующее взаимодействие ЛПОНП с липопротеинлипазой в тканевых капиллярах приводит к формированию остаточных ЛПОНП, богатых холестерином (ЛППП). Примерно половина этих частиц выводится из кровотока клетками печени в течение 2–6 ч. Остальные претерпевают модификацию с замещением оставшихся триглицеридов эфирами холестерина и освобождением от всех апопротеинов, за исключением апопротеина В. В результате формируются ЛПНП, которые содержат ¾ всего плазменного холестерина. Их главная функция — доставка холестерина в клетки надпочечников, скелетных мышц, лимфоцитов, гонад и почек [3]. Модифицированные ЛПНП (окисленные продукты, количество которых возрастает при повышенном содержании в организме активных форм кислорода, так называемом окислительном стрессе) могут распознаваться иммунной системой как нежелательные элементы. Тогда макрофаги их захватывают и выводят из организма в виде ЛПВП. При чрезмерно высоком уровне ЛПНП макрофаги становятся перегруженными липидными частицами и оседают в стенках артерий, образуя атеросклеротические бляшки.

Основные транспортные функции липопротеинов приведены в таблице.

Таблица. Функции липопротеинов [5].

Класс Размеры Функция
ЛПВП 4–14 нм Транспорт холестерина от периферийных тканей к печени
ЛПНП 20–22,5 нм Транспорт холестерина, триглицеридов и фосфолипидов от печени к периферийным тканям
ЛППП 25–35 нм Транспорт холестерина, триглицеридов и фосфолипидов от печени к периферийным тканям
ЛПОНП 30–80 нм Транспорт холестерина, триглицеридов и фосфолипидов от печени к периферийным тканям
Хиломикроны 75–1200 нм Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

Уровень холестерина в крови в большой степени определяется диетой. Пищевые волокна снижают уровень холестерина, а пища животного происхождения повышает его содержание в крови.

Один из основных регуляторов метаболизма холестерина — рецептор LXR (рис. 3). LXR α и β принадлежат к семейству ядерных рецепторов, которые образуют гетеродимеры с ретиноидным Х рецептором и активируют гены-мишени. Их естественные лиганды — оксистерины (окисленные производные холестерина). Обе изоформы идентичны на 80% по аминокислотной последовательности. LXR-α обнаружен в печени, кишечнике, почках, селезенке, жировой ткани; LXR-β в небольшом количестве обнаруживается повсеместно [6]. Метаболический путь оксистеринов быстрее, чем у холестерина, и поэтому их концентрация лучше отражает краткосрочный баланс холестерина в организме. Существует всего три источника оксистеринов: ферментативные реакции, неферментативное окисление холестерина и поступление с пищей. Неферментативные источники оксистеринов как правило минорные, но в патологических состояниях их вклад возрастает (окислительный стресс, атеросклероз), и оксистерины могут действовать наряду с другими продуктами перекисного окисления липидов [6]. Основное влияние LXR на метаболизм холестерина: обратный захват и транспорт в печень, вывод с желчью, снижение кишечного всасывания. Уровень продукции LXR различается на протяжении аорты; в дуге, зоне турбулентности, LXR в 5 раз меньше, чем в участках со стабильным течением. В здоровых артериях повышение экспрессии LXR в зоне сильного потока оказывает антиатерогенное действие [7].

Рисунок 3. Участие рецептора LXR в метаболизме холестерина в печени

Важную роль в метаболизме холестерина и стероидов играет рецептор-«мусорщик» SR-BI (рис. 4). Он был обнаружен в 1996 году как рецептор для ЛПВП [8]. В печени SR-BI отвечает за избирательный захват холестерина из ЛПВП. В надпочечниках SR-BI опосредует избирательный захват этерифицированного холестерина из ЛПВП, который необходим для синтеза глюкокортикоидов. В макрофагах SR-BI связывает холестерин, что является первым этапом в обратном транспорте холестерина. SR-BI также захватывает холестерин из плазмы и опосредует его прямой выход в кишечник [9].

Рисунок 4. Участие рецептора SR-BI в метаболизме холестерина

Классический путь выведения холестерина: транспорт холестерина с периферии в печень (ЛПВП), захват клетками печени (SR-BI), экскреция в желчь и выведение через кишечник, где большая часть холестерина возвращается в кровь [10].

Основная функция ЛПВП — обратный транспорт холестерина в печень. Плазменные ЛПВП являются результатом комплекса различных метаболических событий. Состав ЛПВП очень различается по плотности, физико-химическим свойствам и биологической активности. Это сферические или дисковидные образования. Дисковидные ЛПВП в основном состоят из апопротеина A-I с вложенным слоем фосфолипидов и свободного холестерина. Сферические ЛПВП больше и дополнительно содержат гидрофобное ядро из эфиров холестерина и небольшого количества триглицеридов.

При метаболическом синдроме активируется обмен триглицеридов и эфиров холестерина между ЛПВП и триглицерид-богатыми липопротеинами. В результате содержание триглицеридов в ЛПВП повышается, а холестерина снижается (т.е. холестерин не выводится из организма) [11]. Отсутствие ЛПВП у людей встречается при болезни Tangier, главные клинические проявления которой — увеличенные оранжевые миндалины, роговичная дуга, инфильтрация костного мозга и мукозного слоя кишечника [3].

Если коротко обобщить, то страшен не сам холестерин, который является необходимым компонентом, обеспечивающим нормальную структуру клеточных мембран и транспорт липидов в крови, а кроме того он является сырьем для производства стероидных гормонов. Метаболические расстройства же проявляются при нарушении баланса ЛПНП и ЛПВП , что отражает нарушение системы транспорта липопротеинов, включающей работу печени, образование желчи и участие макрофагов. Поэтому любые заболевания печени, а также аутоиммунные процессы могут вызвать развитие атеросклероза даже при вегетарианской диете. Если мы вернемся к изначальным опытам Н.А. Аничкова по кормлению кроликов пищей, богатой холестерином, то увидим, что холестерин не встречается в естественном рационе кроликов и поэтому, как яд, нарушает работу печени, вызывает сильное воспаление сосудов и, как следствие, образование бляшек.

Восстановление этого баланса искусственным путем (например, на молекулярном уровне с использованием наночастиц) когда-нибудь станет основным способом лечения атеросклероза (см. «Наночастицами — по „плохому“ холестерину!» [13]). — Ред.

источник