Как происходит обезвреживание ядовитых веществ в печени

Печень является органом, занимающим уникальное место в обмене веществ. В каждой печёночной клетке содержится несколько тысяч ферментов, катализирующих реакции многочисленных метаболических путей. Поэтому печень выполняет в организме целый ряд метаболических функций. Важнейшими из них являются:

биосинтез веществ, которые функционируют или используются в других органах. К этим веществам относятся белки плазмы крови, глюкоза, липиды, кетоновые тела и многие другие соединения;

биосинтез конечного продукта азотистого обмена в организме — мочевины;

участие в процессах пищеварения — синтез желчных кислот, образование и экскреция желчи;

биотрансформация (модификация и конъюгация) эндогенных метаболитов, лекарственных препаратов и ядов;

выделение некоторых продуктов метаболизма (желчные пигменты, избыток холестерола, продукты обезвреживания).

Основная роль печени в обмене углеводов заключается в поддержании постоянного уровня глюкозы в крови. Это осуществляется путём регуляции соотношения процессов образования и утилизации глюкозы в печени.

В клетках печени содержится фермент глюкокиназа, катализирующий реакцию фосфорилирования глюкозы с образованием глюкозо-6-фосфата. Глюкозо-6-фосфат является ключевым метаболитом углеводного обмена; основные пути его превращения представлены на рисунке 1.

Пути утилизации глюкозы. После приёма пищи большое количество глюкозы поступает в печень по воротной вене. Эта глюкоза используется прежде всего для синтеза гликогена (схема реакций приводится на рисунке 2). Содержание гликогена в печени здоровых людей обычно составляет от 2 до 8% массы этого органа.

Гликолиз и пентозофосфатный путь окисления глюкозы в печени служат в первую очередь поставщиками метаболитов-предшественников для биосинтеза аминокислот, жирных кислот, глицерола и нуклеотидов. В меньшей степени окислительные пути превращения глюкозы в печени являются источниками энергии для обеспечения биосинтетических процессов.

Рисунок 1. Главные пути превращения глюкозо-6-фосфата в печени.

Цифрами обозначены: 1 — фосфорилирование глюкозы; 2 — гидролиз глюкозо-6-фосфата; 3 — синтез гликогена; 4 –

мобилизация гликогена; 5 — пентозофосфатный путь; 6 — гликолиз; 7 — глюконеогенез.

Рисунок 2. Схема реакций синтеза гликогена в печени.

Рисунок 3. Схема реакций мобилизации гликогена в печени.

Пути образования глюкозы. В некоторых условиях (при голодании низкоуглеводной диете, длительной физической нагрузке) потребность организма в углеводах превышает то количество, которое всасывается из желудочно-кишечного тракта. В таком случае образование глюкозы осуществляется с помощью глюкозо-6-фосфатазы, катализирующей гидролиз глюкозо-6-фосфата в клетках печени. Непосредственным источником глюкозо-6-фосфата служит гликоген. Схема мобилизации гликогена представлена на рисунке 3.

Мобилизация гликогена обеспечивает потребности организма человека в глюкозе на протяжении первых 12 — 24 часов голодания. В более поздние сроки основным источником глюкозы становится глюконеогенез — биосинтез из неуглеводных источников.

Основными субстратами для глюконеогенеза служат лактат, глицерол и аминокислоты (за исключением лейцина). Эти соединения сначала превращаются в пируват или оксалоацетат — ключевые метаболиты глюконеогенеза.

Глюконеогенез — процесс, обратный гликолизу. При этом барьеры, создаваемые необратимыми реакциями гликолиза, преодолеваются при помощи специальных ферментов, катализирующих обходные реакции (см. рисунок 4).

Из других путей обмена углеводов в печени следует отметить превращение в глюкозу других пищевых моносахаридов — фруктозы и галактозы.

Рисунок 4. Гликолиз и глюконеогенез в печени.

Ферменты, катализирующие необратимые реакции гликолиза: 1 — глюкокиназа; 2 — фосфофруктокиназа; 3 — пируваткиназа.

Ферменты, катализирующие обходные реакции глюконеогенеза: 4 -пируваткарбоксилаза; 5 — фосфоенолпируваткарбоксикиназа; 6 -фруктозо-1,6-дифосфатаза; 7 — глюкозо-6-фосфатаза.

источник

Печень – это самая крупная пищеварительная железа в человеческом теле массой до 1,5 кг. Она участвует в обмене белков, углеводов, пигментном обмене, обезвреживает чужеродные соединения и выделяет желчь. Печень выполняет защитную (барьерную) функцию, в ней происходит обезвреживание всасаваюшихся из кишечника в кровь ядовитых продуктов распада белков и ядовитых веществ, образовавшихся в результате жизнедеятельности микробов в толстой кишке. Ядовитые вещества в печени нейтрализуются и выводятся из организма с мочой и калом. Печень участвует в пищеварении, выделяя желчь. Желчь вырабатывается клетками печени постоянно, а поступает в двенадцатиперстную кишку через общий желчный проток только при наличии в ней пищи. Когда пищеварение прекращается, желчь скапливается в желчном пузыре, где в результате всасывания воды концентрация желчи возрастает в 7 – 8 раз. Пузырная желчь, выделяющаяся в двенадцатиперстную кишку, ферментов не содержит, а только участвует в эмульгации жиров (для более успешного действия липаз). Кроме того, желчь разрушает пепсин, снижает кислотность пищевой массы, ускоряет гидролиз белков и углеводов, улучшает всасывание в тонкой кишке холестерина, жирных кислот, жирорастворимых витаминов D, Е, К, солей кальция, уменьшает развитие гнилостных процессов. рН желчи составляет 7,8 – 8,6. В сутки ее вырабатывается 0,5 – 1 л. В желчи содержатся желчные кислоты, желчные пигменты, холестерин, множество ферментов. Желчные пигменты (билирубин, биливердин), представляющие собой продукты распада гемоглобина, придают желчи золотисто-желтый цвет. Желчь выделяется в двенадцатиперстную кишку через 3 – 12 мин после начала приема еды. Увеличивают секрецию желчи желтки, молоко, мясо, хлеб. Холецистокинин стимулирует сокращения желчного пузыря и выделение желчи в двенадцатиперстную кишку.

В печени постоянно синтезируется и расходуется гликоген – полисахарид, представляющий собой полимер глюкозы. Адреналин и глюкагон усиливают распад гликогена и поступление глюкозы из печени в кровь.

Обезвреживание вредных веществ, поступивших в организм извне или образовавшихся при переваривании пищи, осуществляется в печени благодаря деятельности мощных ферментных систем гидроксилирования и обезвреживания чужеродных и токсических веществ. Кроме того, в печени аммиак, образующийся при распаде аминокислот, нуклеотидов и других веществ, связывается в составе мочевины и удаляется из организма.

Состав и свойства сока поджелудочной железы

Поджелудочная железа – железа гроздевидной формы массой 70 – 80 г, находящаяся в изгибе 12-перстной кишки. Поджелудочная железа относится к железам смешанной секреции, состоит из эндокринного и экзокринного отделов.

Эндокринный отдел (клетки островков Лангерганса) выделяет гормоны прямо в кровь).

В экзокринном отделе (клетки основной части поджелудочной железы) вырабатывается поджелудочный сок, который содержит пищеварительные ферменты, воду, бикарбонаты, электролиты и по специальным выводным протокам поступает в двенадцатиперстную кишку. В сутки вырабатывается 1,5 – 2,5 л поджелудочного сока, рН 7,5 – 8,8 (за счет HCO3-), для нейтрализации кислого содержимого желудка и создания щелочного рН, при котором лучше работают поджелудочные ферменты, гидролизующие все виды питательных веществ (белки, жиры, углеводы, нуклеиновые кислоты). Протеазы (трипсиноген, химотрипсиноген и др.) вырабатываются в неактивном виде. Для предупреждения самопереваривания те же клетки, которые выделяют трипсиноген, одновременно продуцируют ингибитор трипсина, поэтому в самой поджелудочной железе трипсин и остальные ферменты протеолиза неактивны. Активация трипсиногена происходит только в полости двенадцатиперстной кишки, и активный трипсин, помимо гидролиза белков, вызывает активацию остальных протеаз сока поджелудочной железы. Сок поджелудочной железы выделяется в двенадцатиперстную кишку через единый с общим желчным протоком сфинктер.

Регуляция выделения сока поджелудочной железы осуществляется посредством нервных и гуморальных влияний. Фазы: мозговая, желудочная и кишечная. Центры регуляции выделения сока поджелудочной железы расположены там же, где и центры регуляции желудочной секреции. Все влияния ЦНС осуществляются через блуждающий нерв (он повышает секреторную активность) и симпатические волокна (торможение). Гормональную (местную) активацию выделения сока поджелудочной железы вызывают гормоны секретин (усиливает в основном выделение бикарбонатов),

холецистокинин (повышает образование ферментов), гастрин, серотонин, желчные кислоты. Кроме того, понижение секреции наблюдается при болевых раздражителях, во время сна, при физической нагрузке и умственной работе.

источник

Чужеродные вещества, попадающие в организм из ЖКТ, через кожу и лёгкие и не использующиеся для пластических и энергетических целей, называют ксенобиотиками . К ним относятся:

красители, токсины бактерий и грибов, пестициды,

продукты метаболизма кишечной микрофлоры и др….

Гидрофильные ксенобиотики выводятся из организма с мочёй. А гидрофобные могут накапливаться и взаимодействовать с белками и липидами клеток и нарушать их структуру и функции.

Механизмы обезвреживания ксенобиотиков происходят во многих тканях, но наиболее активно в печени .

R — радикал, используемый при конъюгации (глутатион, глюкуронил и др.);

В мембранах эндоплазматического ретикулума (ЭР) практически всех тканей локализована система микросомального (монооксигеназного) окисления (МСО), отвечающая за течение I фазы (первого этапа) обезвреживания. Эта система наиболее активна в печени. В клетках некоторых тканей (например, в коре надпочечников) окислительная система локализована в мембранах митохондрий.

Основные ферменты, участвующие в окислительной системе:

— цитохром Р450-редуктаза — флавопротеин (кофермент ФAД или ФMН),

— цитохром Р450 . Цитохром Р450 может связывать в активном центре липофильное вещество RH и молекулу кислорода. Один атом кислорода принимает 2е и переходит в форму О 2 — (супероксидный радикал).

Донором электронов и протонов является восстановленный НAДФН+H + , который окисляется цитохром Р450-редуктазой.

О 2 — — взаимодействует с протонами и образуется вода :

Второй атом молекулы кислорода включается в гидроксильную группу вещества R Н с образованием R-OH.

Суммарное уравнение реакции гидроксилирования вещества RH ферментами микросомального окисления:

RH + О 2 + [ НAДФН +H + ] → ROH + H 2 О + НAДФ + .

Процесс состоит из одного или двух этапов и сводится к увеличению растворимости ксенобиотика.

1 этап – обеспечивает повышение гидрофильности чужеродных веществ и

включает реакции их гидролиза , окисления, гидроксилирования, восстановления;

2 этап – заключается в коньюгации неизменных или химически модифицированных на первом этапе веществ с рядом метаболитов.

Рис. Электротранспортные цепи микросомального окисления субстратов (RН).

— повышение растворимости гидрофобного соединения,

— потеря молекулой ее биологической активности или

— образование более активного соединения , чем вещество, из которого оно оно образовалось.

Цитохром Р450 обладает широкой специфичностью. Кроме того известно много более 1000 изоформ этого фермента, каждая изоформа имеет множество субстратов. Этими субстратами могут быть эндогенные липофильные вещества , а их модификация входит в путь нормального метаболизма этих соединений. Синтез изоформ Р450 индуцируют их субстраты, этанол, а также некоторые метаболиты, например стероидные гормоны, тироксин, кетоновые тела.

Особенностью микросомального окисления является то, что в некоторых случаях ксенобиотики в результате биотрансформации становятся токсичными, например

— парацетамол превращается в вещество, повреждающее клетки печени и почек ,

— бензапирен табачного дыма – в канцерогенный эпоксид .

1 этапе или содержащих полярные группы веществ . Они вступают в реакции: — метилирования,

— соединяются с глутатионом или глюкуроновой кислотой.

активная форма серной кислоты ФАФС ,

Донор глюкуроновой кислоты – УДФ- глюкуронат .

Реакции катализируют трансферазы имеющие широкую субстратную специфичность.

Коньюгация снижает реакционную способность веществ и следовательно, уменьшает их токсичность, повышает гидрофильность и способствует выведению из организма.

RОН –ксенобиотик, образующийся в результате микросомального окисления

источник

Обезвреживание (детоксикация, биотрансформация) естественных метаболитов и чужеродных соединений (ксенобиотиков) непрерывно протекает в любом организме.

Токсичные и просто чужеродные вещества попадают в организм тремя путями: желудочно-кишечный тракт, легкие и кожа. Далее эти вещества либо могут подвергнуться каким-либо превращениям (биотрансформации) в легких и ЖКТ, либо перейти в кровь. С током крови любые соединения попадают в печень и другие органы. Если это водорастворимое вещество, то оно в состоянии профильтроваться в почках, если летучее – оказаться в выдыхаемом воздухе и покинуть организм, если жирорастворимое – оно либо фиксируется в тканях (кожа, нервная система, жировая ткань и т.п.), либо подвергается биотрансформации в печени. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу.

Кожа также является органом выделения, хотя обычно эта функция проявляется слабо. Однако при нарушении выделительной функции почек и/или заболеваниях печени и желчевыделительной системы нагрузка на кожу возрастает, что может привести к ее косметическим нарушениям.

Ксенобиотики – вещества, которые не используются как источник энергии, не встраиваются в структуры организма и не используются для пластических целей.

Например, биотрансформации в печени подвергаются следующие вещества:

  • стероидные и тиреоидные гормоны, инсулин, адреналин,
  • продукты распада гемопротеинов (билирубин),
  • продукты жизнедеятельности микрофлоры, всасывающиеся из толстого кишечника при гниении белков – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов,
  • ксенобиотики (токсины, лекарственные вещества и их метаболиты).

В целом все реакции биотрансформации делят на две группы или фазы:

  • реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Если эти метаболиты достаточно полярны, они могут легко экскретироваться,
  • реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.

Оба типа реакций совершенно самостоятельны и могут идти независимо друг от друга и в любом порядке. Для некоторых веществ после реакций 1-й и 2-й фазы вновь могут наступить реакции фазы 1.

Примером сочетанного превращения веществ может служить обезвреживание индола, продукта катаболизма триптофана в кишечнике, в животный индикан. Сначала индол окисляется с участием цитохрома Р450 до индоксила, затем конъюгирует с серной кислотой с образованием индоксилсульфата и далее калиевой соли – животного индикана.

При повышенном поступлении индола из толстого кишечника образование индикана в печени усиливается, далее он поступает в почки и выводится с мочой. По концентрации животного индикана в моче можно судить об интенсивности процессов гниения белка в кишечнике.

источник

Печень – самая крупная железа организма.

Это своеобразная «биохимическая лаборатория», которая играет важную роль в белковом, углеводном и липидном обменах.

В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церулоплазмин, трансферрин, ангиотензиноген и др.

Эти белки участвуют в регуляции АД и объёма циркулирующей крови, необходимы для свёртывания крови, метаболизма железа и др.

Синтез и распад гликогена

Обмен липидов и их производных:

Синтез ЖК и жиров из углеводов

Синтез и выведение холестерола

Синтез белков плазмы крови (включая некоторые факторы свертывания крови)

Метаболизм и выделение стероидных гормонов

Метаболизм полипептидных гормонов

Метаболизм и экскреция билирубина

Лекарства и чужеродные вещества

! Самая важная функция печени: обезвреживание токсических веществ.

Ксенобиотики – это чужеродные вещества, попадающие в организм из окружающей среды и не использующиеся для пластических и энергетических целей организма.

Они попадают в организм с пищей, через кожу и легкие.

Примеры: нефтепродукты, пластмассы, моющие средства, парфюмерия, красители, пестициды и др.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде в основном с мочой.

Гидрофобные ксенобиотики могут накапливаться и, взаимодействуя с белками и липидами клеток, нарушать их структуру и функции.

Обезвреживание ксенобиотиков происходит во многих тканях, но наиболее активно в печени.

Обезвреживание веществ в печени может состоять из одного или двух этапов.

Этапы обезвреживания веществ в печени:

повышение гидрофильности чужеродных веществ.

Включает реакции их гидролиза, окисления, гидроксилирования, восстановления и др.

! Наиболее частая модификация гидрофобного в-ва на 1 этапе – гидроксилирование.

конъюгация неизмененных или химически модифицированных на 1 этапе веществ с рядом метаболитов.

Если вещество гидрофобно, то его обезвреживание проходит в 2 этапа, если – гидрофильно, то 1 этап может отсутствовать.

Некоторые полярные ксенобиотики выводятся из организма, не подвергаясь никаким превращениям.

Метаболизм и выведение ксенобиотиков из организма:

источник

Выделяют несколько вариантов обезвреживания в печени токсичных продуктов гниения белков.

  1. синтез нетоксичной мочевины из чрезвычайно токсичного NН3
  2. микросомальное окисление токсичных веществ при участии ферментов мооксинегаз. В результате процесса гидроксилирования происходит снижение токсичности, повышается водорастворимость, повышается реакционная способность обезвреживаемого вещества.
  1. образование парных нетоксичных соединений путём присоединения к обезвреживаемым продуктам Н24 , глюкуроновой кислоты, глицина.

Серная кислота в процессах обезвреживания участвует в активной форме ФАФС – фосфоаденозилфосфосульфат (состав: аденин – рибоза – фосфат – сульфат — фосфат).

Калиевая соль индоксилсерной кислоты называется индиканом, выводится через почки. Повышенное количество индикана в моче свидетельствует об усилении гнилостных процессов.

Глюкуроновая кислота в процессах детоксикации участвует в активной форме в виде УДФ-глюкуроновой кислоты (состав: урацил-рибоза-фосфат-фосфат-глюкуроновая кислота)

Глицин, взаимодействуя с бензойной кислотой, образует гиппуровую кислоту.

На этой реакции основана проба Квика для оценки антитоксической функции печени. Антипириновая проба характеризует активность микросомального окисления в печени.

У новорожденных детей гнилостные процессы отсутствуют. У взрослых усиление гнилостных процессов наблюдается при снижении активности протеолитических ферментов желудка и кишечника, при снижении моторики кишечника, дисбактериозах.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8740 — | 7143 — или читать все.

87.119.242.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Чужеродные вещества (ксенобиотики) в печени нередко превращаются в менее токсичные и даже индифферентные вещества. По-видимому, только в этом смысле можно говорить об «обезвреживании» их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо отметить, что в печени окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микро-сомальным в печени существует также пероксисомальное окисление. Пероксисомы – микротельца, обнаруженные в гепатоцитах; их можно рассматривать как специализированные окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты, лактатоксидазу, окси-дазу D-аминокислот, а также каталазу. Последняя катализирует расщепление перекиси водорода, которая образуется при действии указанных оксидаз; отсюда и название этих микротелец – пероксисомы. Пероксисо-мальное окисление, так же как и микросомальное, не сопровождается образованием макроэргических связей.

В печени широко представлены также «защитные» синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона – скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой.

Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: ФАФС и УДФГК.

Глюкуроновая кислота участвует не только в обезвреживании продуктов гниения белковых веществ, образовавшихся в кишечнике, но и в связывании ряда других токсичных соединений, образующихся в процессе обмена в тканях. В частности, свободный, или непрямой, билирубин, обладающий значительной токсичностью, в печени взаимодействует с глюкуроновой кислотой, образуя моно- и диглюкурониды билирубина. Нормальным метаболитом является и гиппуровая кислота, образующаяся в печени из бензойной кислоты и глицина.

Синтез гиппуровой кислоты у человека протекает преимущественно в печени. Поэтому в клинической практике довольно часто для выяснения антитоксической функции печени применяют пробу Квика–Пытеля (при нормальной функциональной способности почек): после нагрузки бензо-атом натрия в моче определяют количество образовавшейся гиппуровой кислоты. При паренхиматозных поражениях печени синтез гиппуровой кислоты снижен.

В печени широко представлены процессы метилирования. Так, перед выделением с мочой амид никотиновой кислоты (витамин РР) метилируется в печени; в результате образуется N-метилникотинамид. Наряду с метилированием интенсивно протекают и процессы ацетилирования . В частности, в печени ацетилированию подвергаются различные сульфаниламидные препараты.

Примером обезвреживания токсичных продуктов в печени путем восстановления является превращение нитробензола в парааминофенол. Многие ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.

Печень принимает активное участие в инактивации различных гормонов. С током крови гормоны попадают в печень, при этом активность их в большинстве случаев резко снижается или полностью утрачивается. Так, стероидные гормоны, подвергаясь микросомальному окислению, инакти-вируются, превращаясь затем в соответствующие глюкурониды и сульфаты. Под влиянием аминооксидаз в печени происходит окисление ка-техоламинов и т.д.

Из приведенных примеров видно, что печень способна инактивировать ряд сильнодействующих физиологических и чужеродных (в том числе токсичных) веществ.

источник

Часть аминокислот не всасывается и подвергается процессам гниения с участием микрофлоры в толстом кишечнике. Продукты гниения аминокислот могут всасываться и попадают в печень, где подвергаются реакциям обезвреживания.

За счет деятельности микрофлоры толстого кишечника а/к подвергаются гниению с образованием ядовитых продуктов: при распаде серусодержащих а/к (цистина, цистеина и метионина) образуются H2S и метилмеркаптан (CH3SH). Диаминокислоты, в частности орнитин и лизин, подвергаются декарбоксилированию с образованием протеиногенных аминов (трупных ядов).

При разрушении фенилаланина, тирозина, триптофана, образуются соответствующие биогенные амины: фенилэтиламин, триптамин, серотонин. При разрушении этих же аминокислот могут образовываться крезол, фенол, скатол, индол, бензол.

Все эти вещества гидрофобны и обладают мембранотропным действием (поражают мембраны клеток печени, эритроцитов, легких). Продукты распада аминокислот поступают в печень, где подвергаются детоксикации. В печени эти продукты обезвреживаются путемконъюгации с серной или глюкуроновой кислотой с образованием нетоксичных парных кислот (фенолсерная, скатоксилсерная).

Происходит это так: в печени содержатся специфические ферменты — арилсульфотрансфераза и УДФ-глюкуронилтрансфераза, которые катализируют перенос остатка серной кислоты из ее связанной формы-ФАФС (фосфоаденозин-фосфосульфат) и остатка глюкуроновой кислоты из ее связанной формы-УДФГК (уридиндифосфоглюкуроновой кислоты) на любой из указанных выше продуктов. Продукты реакции нетоксичные так называемые парные кислоты (например, фенолсерная кислота, скатоксилсерная), выделяются с мочой.

Диагностическое значение индикана: он характеризует содержимое кишечника. Содержание индикана увеличивается при запорах, непроходимости кишечника, при перитонитах и парезах кишечника. В этих случаях индикан появляется в крови и выделяется с мочой в повышенных количествах. Увеличение его концентрации в крови наблюдается на ранних стадиях почечной недостаточности.

Эндогенный пул аминокислот в тканях — пути формирования и утилизации.

Белки организма постоянно находятся в обороте. Оборот белка — это время синтеза и распада белка. В отличие от распада липидов и углеводов, распад белка не находится под контролем гормонов, но зависит от энергетического статуса клетки: распад осуществляется под влиянием протеаз, которые чувствительны к концентрации ионов Ca 2+ . (концентрация Ca 2+ = 10 -7 моль в клетке, 10 -3 моль вне клетки). При нарушении энергообмена Ca-зависимая АТФ-аза не работает и Ca накапливается в клетке, что приводит к активации протеаз и усиленному распаду белка (протеолизу).

Изотопными методами было установлено, что общий метаболический пул а/к на 2/3 состоит из эндогенных а/к, и на 1/3 из экзогенных. Причем исключительно важное значение имеет именно эндогенный пул; который пополняется:

1) за счет гидролиза и протеолиза старых белков;

2) за счет частичного протеолиза прогормонов и протоферментов (система комплемента);

3) за счет мутировавших дефектных белков;

4) за счет новосинтезированных заменимых а/к.

источник

Чего хотят пациенты? Качественных и доступных медицинских услуг. Чего хотят врачи? Достойной зарплаты и надлежащих условий труда!

Механизм обезвреживания токсических веществ в печени может быть различным: окисление, восстановление, метилирование, ацетилирование, коньюгация с различными веществами.

Широко представлены защитные синтезы, например, синтез мочевины, в результате которого обезвреживается аммиак. Дезаминирование аминокислот сопровождается образованием аммиака, являющегося сильным клеточным ядом. Обезвреживание его происходит путем синтеза мочевины. Этот процесс происходит в печени, эта одна из важнейших ее функций.

Аммиак постоянно содержится в крови (12-65 мкмоль/л). Он поступает в кровь из органов и тканей, где постоянно образуется в процессе белкового обмена, а также из толстого кишечника, в котором аммиак освобождается при разложении азотсодержащих веществ гнилостными бактериями. Будучи направлен по системе воротной вены в печень, он превращается в ней в мочевину. Поэтому печеночная недостаточность может приводить к повышению уровня аммиака в крови. Определение аммиака должно проводиться немедленно после взятия крови. Особенно чувствительны к действию аммиака в крови клетки ЦНС. Определение аммиака в крови имеет большое прогностическое значение при заболеваниях печени, которая при тяжелых паренхиматозных повреждениях не в состоянии обезвредить поступающий аммиак. Содержание аммиака в моче является важным показателем состояния кислотно-основного равновесия. Количество аммиака в моче повышается как при респираторном так и метаболическом ацидозе, при гиперфункции коры надпочечников, лихорадочных состояниях. Снижается аммиак при алкалозах и гипофункции коры надпочечников.

Аммиак, образующийся в организме, представляет собой конечный продукт распада аминокислот. Он является токсичным и поэтому организм выработал механизмы его обезвреживания. К ним относятся образование мочевины, амидов глутаминовой и аспарагиновой кислот – глутамина и аспарагина, восстановительное аминирование альфа-кетоглутаровой кислоты и связывание аммиака кислотами в виде аммонийных солей. В основе этого метода лежит реакция разложения аммонийных солей с выделением свободного аммиака.

Мочевая кислота является конечным продуктом обмена пуриновых оснований, входящих в состав нуклеопротеидов. При окислении мочевой кислоты образуется пурпурная кислота, которая при взаимодействии с аммиаком образует окрашенное соединение, аммонийную соль пурпурной кислоты.

Кроме дезаминирования и переаминирования некоторые АК подвергаются в печени особым превращениям, свойственным только данной АК. Нарушение функции печени в этих случаях существенно меняет путь распада АК.

Токсические вещества из кишечника (продукты распада – фенол, крезол, скатол, индол) в печени подвергаются обезвреживанию. Механизм заключается в образовании парных соединений с серной и глюкуроновой кислотами. Примером обезвреживания токсических продуктов путем их восстановления является превращение хлоралгидрата в трихлорэтиловый спирт. Ароматические углеводы обезвреживаются путем окисления с образованием соответствующих карбоновых кислот.

В печени происходит распад и некоторых сильнодействующих физиологических агентов (адреналин, гистамин), инактивируются гормоны (эстрадиол – эстрон и эстриол), образуются конъюгаты гормонов с другими веществами. Печень принимает участие в синтезе и распаде пигментов: гемоглобина, миоглобина, цитохромов.

Многообразие функций печени находит отражение в обилии лабораторных исследований, предложенных для оценки функционального состояния этого органа. Наиболее чувствительными и точными методами определения мочевины являются уреазный (ферментативный). Принцип уреазного метода заключается в следующем: мочевина под действием уреазы разлагается на углекислый газ и аммиак. Последний определяется колориметрически по образованию окрашенных продуктов с реактивом Несслера. Количество мочевины в крови и моче снижено при циррозах печени, отравлениях фосфором, мышьяком и другими ядами.

Синтез и распад гликогена в печени – эти 2 процесса обеспечивают постоянство концентрации сахара в крови. Соотношение между синтезом и распадом гликогена регулируется нейрогуморальным путем при участии желез внутренней секреции. Такие гормоны, как АКТГ, глюкокортикоиды и инсулин, увеличивают содержание гликогена в печени. Что касается адреналина, глюкагона, соматотропного гормона гипофиза и тироксина, то они стимулируют распад гликогена.

Экспресс-методы определения сахара и ацетона в моче.

Принципы комплексного индивидуального лечения больных бронхиальной астмой.
Правильное построение индивидуального лечения зависит от следующего: · фазы заболевания (тактическая терапия в фазе обострения, стратегическая в фазе ре .

Выводы
1. В процессе анализа научно-исследовательской литературы выявлено, что у больных с артритами суставов нижних конечностей основе патогенеза лежат иммунопатологические нарушения, возникающие в резу .

Биологические активные добавки
Современная медицина уделяет большое внимание взаимосвязи между здоровьем человека и особенностями его питания, которое является не только средством насыщения и источником энергии, но и фактором норма .

источник

В организме образуются и поступают извне в значительном количестве токсичные продукты различной химической структуры. В связи с этим понятно и разнообразие химических реакций, способствующих переводу их в менее токсичные соединения с последующим удалением из организма. Ряд детоксикационных процессов изучен давно и детально. Это характерно для эндогенно образующихся веществ, таких как аммиак, продукты гнилостных процессов, происходящих в толстом кишечнике. Что же касается все расширяющегося набора лекарственных препаратов, многие из которых оказывают побочное влияние на печень, то пути метаболизма многих из них остаются недостаточно изученными.

Образующийся при дезаминировании аминокислот аммиак, как уже было сказано выше, весьма токсичен для нервной системы и обезвреживается в печени, превращаясь в мочевину. Образование мочевины является синтетическим процессом, требующим затраты АТФ. Первый этап синтеза мочевины заключается в соединении аммиака с аминокислотой орнитином и АТФ, при этом получается карбамоилфосфат. Естественно, что поражение гепатоцита вирусом или каким-либо продуктом, ведущим к дегенерации клеточных структур и целых клеток приводит к снижению количества синтезированной мочевины. Снижение концентрации мочевины в крови типично для выраженных поражений паренхимы печени. Правда, в отдельных тяжелых случаях, когда в патологический процесс наряду с печенью вовлекаются и почки (гепато-ренальный синдром), это снижение может не наблюдаться, так как низкий уровень синтезированной в больной печени мочевины маскируется снижением выведения ее больными почками.

Нарушение синтеза мочевины приводит к повышенной концентрации аммиака в крови, а следовательно, к усиленному поступлению его в мозг. Это может быть одной из причин печеночной энцефалопатии. Увеличению содержания аммиака в крови способствует ряд факторов, встречающихся при тяжелых поражениях печени. К ним относятся кровотечения в желудочно-кишечном тракте из варикозных расширений вен, что имеет место при портальной гипертензии. Образующийся при распаде белков крови аммиак поступает через портосистемные шунты, минуя печень, в общий ток кровообращения. Аналогичная картина наблюдается и при избытке белков в рационе, в особенности при застое пищевых масс в кишечнике. Наличие гепато-ренального синдрома приводит к снижению выведения мочевины из кровотока, тогда увеличивается ее поступление в кишечник. Там она превращается в аммиак, который через портосистемные шунты увеличивает содержание аммиака в крови. Существенное влияние оказывает и изменение кислотно-основного баланса в сторону алкалоза. Аммиак находится в организме как в форме газа (NH3), так и в форме иона (NH4 + ), проницаемость которых для мозга неодинакова. Газообразный аммиак легче проникает в мозг, а алкалоз как раз и способствует превращению аммонийного иона в газообразный аммиак.

Наряду с нейротоксическим действием аммиака, в развитии печеночных энцефалопатий принимают участие меркаптан, фенол, жирные кислоты с короткой углеродной цепью, -аминомасляная кислота.

Вторым механизмом обезвреживания является образование парных соединений (конъюгатов). В качестве компонента, вступающего в реакцию с токсическим агентом, чаще всего участвуют серная, глюкуроновая кислота, аминокислота глицин. Примером такого механизма может служить образование фенолсерной кислоты, крезолсерной кислоты, индоксилсерной кислоты, фенолглюкуроновой кислоты — результат обезвреживания продуктов гниения белков в кишечнике, когда из циклических аминокислот получаются фенол, крезол, скатол, индол.

Образование конъюгатов непрямого билирубина с глюкуроновой кислотой, то есть образование прямого билирубина, тоже является примером детоксикации, так как доказана токсичность для нервной системы высоких концентраций непрямого билирубина.

Бензойная кислота образует конъюгаты с глицином, при этом получается гиппуровая кислота. Данная реакция длительное время использовалась для оценки детоксикационной способности печени (проба Квика).

Довольно хорошо изучены пути метаболизма таких биологически активных веществ, как гормоны. Значительная роль в их метаболизме принадлежит печени. Гормоны пептидной природы инактивируются путем протеолиза и дезаминирования освобождающихся аминокислот. По крайней мере для инсулина и глюкагона доказано, что это происходит в печени.

Гормоны щитовидной железы, являющиеся иодированными производными аминокислот, предварительно подвергаются деиодированию, удалению аминогрупп и разрыву тиронинового ядра. Возможно также конъюгирование с глюкуроновой, а иногда и с серной кислотой.

Для стероидных гормонов характерно после ряда химических превращений выделение в виде конъюгатов. Так, кортикостероиды сначала восстанавливаются, а восстановленные их метаболиты выделяются в виде парных соединений с глюкуроновой кислотой. В виде конъюгатов с глюкуроновой или серной кислотой выделяются продукты метаболизма половых гормонов.

Если для обезвреживания постоянно образующихся в процессе обмена веществ токсических агентов в организме существуют хорошо изученные детоксикационные механизмы, то повреждающий механизм лекарственных препаратов и пути ослабления действия гепатотоксических препаратов в большинстве случаев остаются мало изученными. Между тем, более 40 препаратов вызывают диффузную гепатоцеллюлярную недостаточность или обтурационную желтуху, холестаз. Ниже приводится сокращенная сводная таблица лишь о некоторых из них.

источник

Обезвреживание в печени может происходить как эндогенных токсических веществ, так и чужеродных соединений. В две фазы:

окисление, восстановление, метилирование:

коньюгирование с УДФГК и ФАФС.

Обезвреживание лекарственных препаратов — это изменение химической структуры лекарственных веществ, сопровождающая изменением их активности. Эти изменения происходят (чаще это инактивация) в разлчиных тканях и органах. Одни вещества изменяются в кишечнике, другие в коже, легких, почках, но подавляющее большинство — в печени (так же как впрочем большинство чужеродных соединений)ю Следовательно процессы биохимической трансформации имеют огромное значение как дря лекарственной терапии, так и для защиты организма от вредного воздействия самых разнообразных веществ — инсектицидов, гербицидов, красителей, пищевых консервантов, веществ обладающих канцерогенными свойствами, продуктов гниения аминокислот, НЭЖК, билирубина, отдельных гормонов.

В биохимическом превращении лекарств и некоторых чужеродных соединенийв печени участвует ряд чужеродных ферментных систем, способных воздействовать на множество разнообразных по своей структуре лекарственных препаратов. Эти ферментные системы встроены в мембране эндоплазматической сети специализированных печеночных клеток — гепатоцитов, эндоплазматическая сеть состоит из сообщающихся канальцев, основная функция которых сборка ферментных комплексов, переработка чужеродных веществ. Эндоплазматическую сеть невозможно выделить из клетки не повредив ее, при гомогенизации и центрифугировании система канальцев разрушается и обрывки ее мембран образуют мельчайшие пузырьки (микросомы). Функция микросом служит источником ферментов, которые используют при изучении метаболизма в качестве лекарственных препаратов.

Процесс переработки лекарств и пищевых чужеродных веществ в печени включает реакции сравнительно немногих типов :

связывание (коньюгация) с каким-либо другим веществом.

Суть всех реакций состоит в том что:

липофильные или жирорастворимые вещества превращаются в гидрофильные, т.е. водорастворимые соединения (легче извлекаются почками и вывордятся).

Большинство превращений так или иначе связано с окислением. Это обьясняется тем, что любое сложное вещество может быть окисленно различными способами. Например алкильные белковые цепи барбитуратов и некоторых других веществ окисляются с образованием спиртов. При окислении соединений с ароматическими кольцами, гидроксильная группа (напримен фенобарбитал) появляется в кольце. В других случях происходит отщепление алкильных групп от атомов азота или кислорода, отщепление NH2 или образование сульфорадикалов. Оксидазы со смешанной функцией — комплексы

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9510 — | 7531 — или читать все.

87.119.242.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Роль печенив пищеварениии заключается в выработке основных компонентов желчи, которая содержит вещества, необходимые для пищеварения.

Печень играет важную роль в выведении многих токсических веществ из организма. В печени происходит метаболизм большого числа токсическихвеществ, выделение которых с желчью зависит от размера молекул и молекулярной массы. С увеличением молекулярной массы токсических веществвозрастает скорость выделения их с желчью. Эти вещества выделяются с желчью главным образом в виде конъюгатов. Некоторые конъюгаты подвергаются разложению гидролитическими ферментами желчи.

Желчь, содержащая токсические вещества, поступает в кишки, из которых эти вещества снова могут всасываться в кровь. Поэтому с калом из организмавыводятся только те вещества, которые выделяются с желчью в кишки и повторно не всасываются в кровь. С калом выделяются и вещества, не всасывающиеся в кровь после перорального введения, а также те, которые выделились слизистой желудка и кишок в полость пищеварительной системы. Этим путем выделяются из организма некоторые тяжелые и щелочноземельные металлы.

Токсические вещества и их метаболиты, образовавшиеся в печени и поступившие с желчью в кишки, а затем снова всосавшиеся в кровь, выделяются почками смочой.

В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инактивируются лекарственные препараты и токсические вещества экзогенного происхождения, NH3 — продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Поджелудочная железа: ее эндокринная и экзокринная части. Состав и свойства сока поджелудочной железы.

Поджелу́дочная железа́ человека— орган пищеварительной системы;

В сложном ансамбле желез человеческого организма особая роль принадлежит поджелудочной железе. Это железа смешанной секреции, и состоит она из двух частей — экзокринной и эндокринной. Экзокринная часть поджелудочной железы вырабатывает пищеварительные ферменты, а эндокринная — гормоны, регулирующие в организме углеводный, жировой и белковый обмен. С нарушением деятельности эндокринной части поджелудочной железы связано возникновение сахарного диабета.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8582 — | 7403 — или читать все.

87.119.242.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

97. Обезвреживающая роль печени. Реакции микросомального окисления и реакции коньюгации токсических веществ в печени. Примеры обезвреживания (фенол, индол).

С током крови любые соединения попадают в печень и другие органы. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу. Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз в глюкозу. Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы

Например, биотрансформации в печени подвергаются следующие вещества:

стероидные и тиреоидные гормоны, инсулин, адреналин,

продукты распада гемопротеинов (билирубин),

продукты жизнедеятельности микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов,

ксенобиотики (токсины, лекарственные вещества и их метаболиты).

В целом все реакции биотрансформации делят на две группы или фазы:

реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH).

реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.

БИОСИНТЕЗ ГЕМА. Исходным материалом в синтезе является глицин и активная форма янтарной кислоты и образующийся из них сигма -АМИНОЛЕВУМИНОВАЯ кислота (АЛК). В дальнейшем из двух молекул этой кислоты образуется МОНОПИРРОЛ. Далее при конденсации четырёх молекул монопиррола образуется ТЕТРАПИРРОЛ, дальнейшее превращение которого в гем предусматривает ДЕКАРБОКСИЛИРОВАНИЕ, окисление с последующим включением атома железа. Печень и костный мозг с ядросодержащими эритроцитами занимают центральное место в биосинтезе. В меньшей степени биосинтез возможен в почках и слизистой кишечника.

РАСПАД ГЕМА. За сутки в организме взрослого человека в среднем с массой 70кг распадается около 9гр гемпротеинов, главным образом за счёт распада эритроцитов, что ведёт к высвобождению гемоглобина, который связывается с альфа2 -ГЛОБУЛИНАМИ плазмы и в виде комплекса ГЕМОГЛОБИН-ГАПТОГЛОБИН попадает в клетки селезёнки, печени и соединительной ткани. Гаптоглобин, отщепляясь, переходит в кровь, а гемоглобин, окисляясь, подвергается распаду с образованием желчных кислот БИЛИВЕРДИНА и БИЛИРУБИНА. Распад гемоглобина начинается с разрыва одного из метильных мостиков с образованием ВЕРДОГЛОБИНА. В дальнейшем от молекулы ВЕРДОГЛОБИНА отщепляется ГЛОБИН и железо с образованием БИЛЛИВЕРДИНА, который в дальнейшем превращается при восстановлении в БИЛЛИРУБИН (коричневого цвета). В крови он соединяется с белком АЛЬБУМИНОМ, образуя комплексное соединение БИЛЛИРУБИН-АЛЬБУМИН. Его принято называть неконъюгированным биллирубином (НБ). Поступая в печень, НБ обезвреживается. Выполнив транспортную роль, с током крови уходит альбумин, а в клетках печени биллирубин будет конъюгироваться с глюкуроновой кислотой (УДФГК), при этом образуется МОНОДИБИЛЛИРУБИНГЛЮКУРОНИД. Глюкуроновая кислота присоединяется к СООН-группе остатков пропионовой кислоты. ГЛЮКУРОНИДЫ это уже обезвреженные формы биллирубина. Их называют КОНЪЮГИРОВАННЫМ БИЛЛИРУБИНОМ (КБ). КБ выделяется из печени в составе желчи в кишечник, где под влиянием ферментов слизистой оболочки кишечника и кишечной микрофлоры гидролитически распадается. Глюкуроновая кислота всасывается в кровь и через систему портальной вены поступает в печень, где снова принимает участие в интоксикации веществ. БИЛЛИРУБИН восстанавливается по некоторым двойным связям, превращаясь в МЕЗОБИЛЛИНОГЕН. Он частично в тонком отделе кишечника может всасываться в кровь и через портальную вену поступать в печень, где частично распадается с образованием моно-, ди-, трипирролов, которые выделяются почками в составе мочи. Незначительная часть МЕЗОБИЛИНОГЕНА поступает в почки и выделяется в виде УРОБИЛИНОГЕНА. При суточном диурезе в норме 1,2 — 1,5л с мочой взрослого человека выделяется 1 — 4мг уробилиногена, который на свету превращается в уробилин. Основная часть мезобилиногена под влиянием ферментов кишечной микрофлоры превращается в СТЕРКОБИЛИНОГЕН — основной пигмент кала, который на свету превращается в стеркобилин. Показатели: НБ — 75%, КБ — 25%. общий билирубин КРОВИ — 8 -20ммоль/л.

источник

Механизм обезвреживания токсинов

Обезвреживание веществ в печени заключается в их химической модификации, которая обычно включает две фазы.

В первой фазе вещество подвергается окислению (отсоединению электронов), восстановлению (присоединению электронов) или гидролизу.

Во второй фазе ко вновь образованным активным химическим группам присоединяется какое-либо вещество. Такие реакции именуются реакциями конъюгации, а процесс присоединения — конъюгированием.( см . вопрос 48)

Металлотионеин — семейство низкомолекулярных белков с высоким содержанием цистеина. Молекулярная масса варьирует от 500 Да до 14 кДа. Белки локализуются на мембране аппарата Гольджи. Металлотионеины способны связывать как физиологические (цинк, медь, селен), так и ксенобиотические (кадмий, ртуть, серебро, мышьяк и др.) тяжёлые металлы. Связывание тяжёлых металлов обеспечивается наличием тиольных групп остатков цистеинов, которые составляют около 30% от всего аминокислотного состава.

При попадании в организм ионов тяжелых металлов Cd2+, Hg2+, Pb2+ в печени и почках происходит увеличение синтеза металлотионинов – белков, которые прочно связывают эти ионы, тем самым не давая им в дальнейшем конкурировать с необходимыми для жизнедеятельности ионами Fe2+, Co2+, Mg2+ за места связывания в ферментах.

Процессы микросомального окисления в печени – гидроксилирование вредных соединений, происходящее при участии фермента цитохрома P450 и завершающееся изменением первичной структуры молекул этих веществ. Очень часто данный способ аутодетоксикации оказывается самым главным, особенно, когда речь идет об обезвреживании органических отравляющих веществ и лекарственных препаратов. Вообще, именно в печени обезвреживается максимальное количество чужеродных веществ (ксенобиотиков), и уже оттуда они направляются к органам, через которые будут выведены.

Белки теплового шока — это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. Чрезвычайное усиление экспрессии генов, кодирующих белки теплового шока является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока. Белки теплового шока обнаружены в клетках практически всех живых организмов, от бактерий до человека.

Во время роста и метаболизма, кислородные продукты сокращения произведены в пределах микроорганизмов и секретированы в окружающую питательную среду. Суперокисный анион, один кислородный продукт сокращения, произведен унивэлент сокращением кислорода: о2-→ о2- Это произведено во время взаимодействия молекулярного кислорода с различными клеточными элементами, включая сниженные рибофлавины, флэвопротеинс, хиноны, тиолы,и белки железной серы. Точный процесс, которым это наносит внутриклеточный ущерб, не известен; однако, это способно к участию во многих деструктивных реакциях, потенциально смертельных к клетке. Кроме того продукты вторичных реакций могут усилить токсичность.

Например, одна гипотеза считает, что суперокисный анион реагирует с перекисью водорода в клетке:

Эта реакция, известная как реакция Хабера- Вайса, производит свободного гидроксильного радикала (О ·), который является самым мощным биологическим известным оксидантом. Это может напасть фактически на любое органическое вещество в клетке.

Последующая реакция между суперокисным анионом и гидроксильным радикальным

кислородом майки продуктов (O2*), который также разрушителен для клетки:

Взволнованная синглетная кислородная молекула является очень реактивной. Поэтому, суперокись должна быть удалена для клеток, чтобы остаться в живых в присутствии кислорода.

Большинство факультативных и аэробных организмов содержит высокую концентрацию фермента, названного суперокисной дисмутазой. Этот фермент преобразовывает суперокисный анион в кислород стандартного состояния и перекись водорода, таким образом избавляя клетку деструктивных суперокисных анионов:

2о2-+ 2H+Superoxide Дисмутаза O2 + H2 O2

Перекись водорода, произведенная в этой реакции, является окислителем, но это не повреждает клетку столько, сколько суперокисный анион и имеет тенденцию распространяться из клетки. Много организмов обладают каталазой или пероксидазой или обоими, чтобы устранить H2O2. Каталаза использует H2O2 в качестве оксиданта (электронный акцептор) и редактэнт (электронный донор), чтобы преобразовать пероксид в кислород стандартного состояния и воду:

H2O2 + H2O2Catalase 2H2O + O2

Пероксидаза использует редактэнт кроме H2O2: H2O2 + Пероксидаза H2R 2H2O + R

В основном состоянии молекулярный кислород представляет собой относительно стабильную молекулу, спонтанно не реагирующую с различными макромолекулами. Это объясняется его

электронной конфигурацией: основная форма кислорода в атмосфере (3О2) находится в триплетном состоянии.

В настоящее время к числу АФК относят производные кислорода радикальной природы (супероксид-радикал (анион-радикал) О2•-, гидроперекисный радикал НО2•, гидроксил-радикал НО•), а также его реактивные производные (перекись водорода Н2О2, синглетный кислород 1О2 и пероксинитрит).

Поскольку растения неподвижны и находятся под постоянным воздействием меняющихся условий среды, а также осуществляют оксигенный фотосинтез, в их тканях концентрация молекулярного кислорода оказывается намного более высокой, чем у других эукариот. Показано, что концентрация кислорода в митохондриях млекопитающих достигает 0,1 мкМ, в то время как в митохондриях растительных клеток – более 250 мкМ . При этом, по оценкам исследователей, примерно 1 % поглощаемого растениями кислорода преобразуется в его активные формы, что неизбежно связано с неполным пошаговым восстановлением молекулярного кислорода .

Таким образом, появление активных форм кислорода в живом организме связано с протеканием метаболических реакций в различных клеточных компартментах.

источник