Меню Рубрики

Обезвреживание токсических веществ в печени биохимия

Обезвреживание (детоксикация, биотрансформация) естественных метаболитов и чужеродных соединений (ксенобиотиков) непрерывно протекает в любом организме.

Токсичные и просто чужеродные вещества попадают в организм тремя путями: желудочно-кишечный тракт, легкие и кожа. Далее эти вещества либо могут подвергнуться каким-либо превращениям (биотрансформации) в легких и ЖКТ, либо перейти в кровь. С током крови любые соединения попадают в печень и другие органы. Если это водорастворимое вещество, то оно в состоянии профильтроваться в почках, если летучее – оказаться в выдыхаемом воздухе и покинуть организм, если жирорастворимое – оно либо фиксируется в тканях (кожа, нервная система, жировая ткань и т.п.), либо подвергается биотрансформации в печени. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу.

Кожа также является органом выделения, хотя обычно эта функция проявляется слабо. Однако при нарушении выделительной функции почек и/или заболеваниях печени и желчевыделительной системы нагрузка на кожу возрастает, что может привести к ее косметическим нарушениям.

Ксенобиотики – вещества, которые не используются как источник энергии, не встраиваются в структуры организма и не используются для пластических целей.

Например, биотрансформации в печени подвергаются следующие вещества:

  • стероидные и тиреоидные гормоны, инсулин, адреналин,
  • продукты распада гемопротеинов (билирубин),
  • продукты жизнедеятельности микрофлоры, всасывающиеся из толстого кишечника при гниении белков – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов,
  • ксенобиотики (токсины, лекарственные вещества и их метаболиты).

В целом все реакции биотрансформации делят на две группы или фазы:

  • реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Если эти метаболиты достаточно полярны, они могут легко экскретироваться,
  • реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.

Оба типа реакций совершенно самостоятельны и могут идти независимо друг от друга и в любом порядке. Для некоторых веществ после реакций 1-й и 2-й фазы вновь могут наступить реакции фазы 1.

Примером сочетанного превращения веществ может служить обезвреживание индола, продукта катаболизма триптофана в кишечнике, в животный индикан. Сначала индол окисляется с участием цитохрома Р450 до индоксила, затем конъюгирует с серной кислотой с образованием индоксилсульфата и далее калиевой соли – животного индикана.

При повышенном поступлении индола из толстого кишечника образование индикана в печени усиливается, далее он поступает в почки и выводится с мочой. По концентрации животного индикана в моче можно судить об интенсивности процессов гниения белка в кишечнике.

источник

Чужеродные вещества, попадающие в организм из ЖКТ, через кожу и лёгкие и не использующиеся для пластических и энергетических целей, называют ксенобиотиками . К ним относятся:

красители, токсины бактерий и грибов, пестициды,

продукты метаболизма кишечной микрофлоры и др….

Гидрофильные ксенобиотики выводятся из организма с мочёй. А гидрофобные могут накапливаться и взаимодействовать с белками и липидами клеток и нарушать их структуру и функции.

Механизмы обезвреживания ксенобиотиков происходят во многих тканях, но наиболее активно в печени .

R — радикал, используемый при конъюгации (глутатион, глюкуронил и др.);

В мембранах эндоплазматического ретикулума (ЭР) практически всех тканей локализована система микросомального (монооксигеназного) окисления (МСО), отвечающая за течение I фазы (первого этапа) обезвреживания. Эта система наиболее активна в печени. В клетках некоторых тканей (например, в коре надпочечников) окислительная система локализована в мембранах митохондрий.

Основные ферменты, участвующие в окислительной системе:

— цитохром Р450-редуктаза — флавопротеин (кофермент ФAД или ФMН),

— цитохром Р450 . Цитохром Р450 может связывать в активном центре липофильное вещество RH и молекулу кислорода. Один атом кислорода принимает 2е и переходит в форму О 2 — (супероксидный радикал).

Донором электронов и протонов является восстановленный НAДФН+H + , который окисляется цитохром Р450-редуктазой.

О 2 — — взаимодействует с протонами и образуется вода :

Второй атом молекулы кислорода включается в гидроксильную группу вещества R Н с образованием R-OH.

Суммарное уравнение реакции гидроксилирования вещества RH ферментами микросомального окисления:

RH + О 2 + [ НAДФН +H + ] → ROH + H 2 О + НAДФ + .

Процесс состоит из одного или двух этапов и сводится к увеличению растворимости ксенобиотика.

1 этап – обеспечивает повышение гидрофильности чужеродных веществ и

включает реакции их гидролиза , окисления, гидроксилирования, восстановления;

2 этап – заключается в коньюгации неизменных или химически модифицированных на первом этапе веществ с рядом метаболитов.

Рис. Электротранспортные цепи микросомального окисления субстратов (RН).

— повышение растворимости гидрофобного соединения,

— потеря молекулой ее биологической активности или

— образование более активного соединения , чем вещество, из которого оно оно образовалось.

Цитохром Р450 обладает широкой специфичностью. Кроме того известно много более 1000 изоформ этого фермента, каждая изоформа имеет множество субстратов. Этими субстратами могут быть эндогенные липофильные вещества , а их модификация входит в путь нормального метаболизма этих соединений. Синтез изоформ Р450 индуцируют их субстраты, этанол, а также некоторые метаболиты, например стероидные гормоны, тироксин, кетоновые тела.

Особенностью микросомального окисления является то, что в некоторых случаях ксенобиотики в результате биотрансформации становятся токсичными, например

— парацетамол превращается в вещество, повреждающее клетки печени и почек ,

— бензапирен табачного дыма – в канцерогенный эпоксид .

1 этапе или содержащих полярные группы веществ . Они вступают в реакции: — метилирования,

— соединяются с глутатионом или глюкуроновой кислотой.

активная форма серной кислоты ФАФС ,

Донор глюкуроновой кислоты – УДФ- глюкуронат .

Реакции катализируют трансферазы имеющие широкую субстратную специфичность.

Коньюгация снижает реакционную способность веществ и следовательно, уменьшает их токсичность, повышает гидрофильность и способствует выведению из организма.

RОН –ксенобиотик, образующийся в результате микросомального окисления

источник

Печень — самая крупная железа пищеварительного тракта. Она выполняет в организме функцию биохимической лаборатории и играет важную роль в белковом, углеводном и липидном обменах (см. ниже). В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церулоплазмин, транс- феррин, ангиотензиноген и др. Через эти белки опосредуется участие печени в таких важных процессах, как поддержание онкотического давления, регуляция АД и объёма циркулирующей крови, свёртывание крови, метаболизм железа и др.

Важнейшая функция печени — детоксикационная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инактивируются лекарственные препараты и токсические вещества экзогенного происхождения, NН3 — продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом.

Чужеродные вещества, или ксенобиотики, делят на 2 группы:

• продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);

• вещества бытовой химии — моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде с мочой, гидрофобные могут задерживаться в тканях, связываясь с белками или образуя комплексы с липидами клеточных мембран. Со временем накопление в клетках тканей чужеродного вещества приведёт к нарушению их функций. Для удаления таких ненужных для организма веществ в процессе эволюции выработались механизмы их детоксикации (обезвреживания) и выведения из организма.

Синтез и распад гликогена

Обмен липидов и их производных

Синтез жирных кислот и жиров из углеводов

Синтез и выведение холестерина

Синтез жёлчных кислот 25-гидроксилирование витамина

Синтез белков плазмы крови (включая некоторые факторы свёртывания крови)

Синтез мочевины (обезвреживание аммиака)

Метаболизм и выделение стероидных гормонов

Метаболизм полипептидных гормонов

Метаболизм и экскреция билирубина

Лекарства и чужеродные вещества

Обезвреживание большинства ксенобиотиков происходит путём химической модификации и протекает в 2 фазы (рис. 12-1). В результате этой серии реакций ксенобиотики становятся более гидрофильными и выделяются с мочой. Вещества, более гидрофобные или обладающие большой молекулярной массой (>300 кД), чаще выводятся с жёлчью в кишечник и затем удаляются с фекалиями.

Рис. 12-1. Метаболизм и выведение ксенобиотиков из организма. RH — ксенобиотик; К — группа, используемая при конъюгации (глутатион, глюкуронил и др.); М — молекулярная масса. Из множества цитохром Р450-зависимых реакций на рисунке приведена только одна — схема гидроксилирования ксенобиотика. В ходе первой фазы в структуру вещества RH вводится полярная группа ОН — . Далее происходит реакция конъюгации; конъюгат в зависимости от растворимости и молекулярной массы удаляется либо почками, либо с фекалиями.

Система обезвреживания включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть модифицирован.

Микросомальные ферменты катализируют реакции С-гидроксилирования, Nгидроксилирования, О-, N-, S-дезалкилирования, окислительного дезаминирования, сульфоокисления и эпоксидирования (табл. 12-1).

Таблица 12-1. Возможные модификации ксенобиотиков в первой фазе обезвреживания

В мембранах ЭР практически всех тканей локализована система микросомального окисления (монооксигеназного окисления). В эксперименте при выделении ЭР из клеток мембрана распадается на части, каждая из которых образует замкнутый пузырёк — микросому, отсюда и название — микросомальное окисление. Эта система обеспечивает первую фазу обезвреживания большинства гидрофобных веществ. В метаболизме ксенобиотиков могут принимать участие ферменты почек, лёгких, кожи и ЖКТ, но наиболее активны они в печени. К группе микросомальных ферментов относят специфические оксидазы, различные гидролазы и ферменты конъюгации.

Вторая фаза — реакции конъюгации, в результате которых чужеродное вещество, модифицированное ферментными системами ЭР, связывается с эндогенными субстратами — глюкуроновой кислотой, серной кислотой, глицином, глутатионом. Образовавшийся конъюгат удаляется из организма.

А. Микросомальное окисление

Микросомальные оксидазы — ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохондриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом.

1. Основные ферменты микросомальных электронтранспортных цепей

Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты — мембранные белки, активные центры которых локализованы на цитоплазматической поверхности ЭР. Система включает несколько белков, составляющих электронтранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов — NADPH-P450 редуктазы и цитохрома Р450, вторая включает фермент NADH-цитохром-b5 редуктазу, цитохром b5 и ещё один фермент — стеароил-КоА-десатуразу.

Электронтранспортная цепь — NADPH-P450 редуктаза — цитохром Р450. В большинстве случаев донором электронов (e) для этой цепи служит NADPH, окисляемый NADPH-P450 редуктазой. Фермент в качестве простетической группы содержит 2 кофермента — флавинадениндинуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADPH переходят последовательно на коферменты NADPH-P450 редуктазы. Восстановленный FMN (FMNH2) окисляется цитохромом Р450 (см. схему ниже).

Читайте также:  Киста на печени чем это грозит

Цитохром Р450 гемопротеин, содержит простетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Название цитохром Р450 указывает на то, что максимум поглощения комплекса цитохрома Р450 лежит в области 450 нм.

Окисляемый субстрат (донор электронов) для NADH-цитохром b5-редуктазы — NADH (см. схему выше). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe 3+ цитохрома b5. Цитохром b5 в некоторых случаях может быть донором электронов (e) для цитохрома Р450 или для стеароил-КоА-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды (рис. 12-2).

Рис. 12-2. Электронтранспортные цепи ЭР. RН — субстрат цитохрома Р450; стрелками показаны реакции переноса электронов. В одной системе NАDРH окисляется NАDРHцитохром Р450-редуктазой, которая затем передаёт электроны на целое семейство цитохромов Р450. Вторая система включает в себя окисление NАDН цитохром b5-редуктазой, электроны переходят на цитохром b5; восстановленную форму цитохрома b5 окисляет стеароил-КоА-десатураза, которая переносит электроны на O2.

NADH-цитохром b5 редуктаза — двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу — кофермент FAD, а единственный гидрофобный «хвост» закрепляет белок в мембране.

Цитохром b5 гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий «заякоренный» в липидном бислое спирализованный домен.

NАDН-цитохром b5-редукгаза и цитохром b5, являясь «заякоренными» белками, не фиксированы строго на определённых участках мембраны ЭР и поэтому могут менять свою локализацию.

2. Функционирование цитохрома Р450

Известно, что молекулярный кислород в триплетном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционноспособным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит моноксигеназная система, содержащая цитохром Р450. Связывание в активном центре цитохрома Р450 липофильного вещества RН и молекулы кислорода повышает окислительную активность фермента. Один атом кислорода принимает 2 e и переходит в форму О 2- . Донором электронов служит NADPH, который окисляется NADPH-цитохром Р450 редуктазой. О 2- взаимодействует с протонами: О 2- + 2Н + —> Н2O, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксильную группу вещества R-OH (рис. 12-3).

Рис. 12-3. Транспорт электронов при монооксигеназном окислении с участием Р450. Связывание (1) в активном центре цитохрома Р450 вещества RН активирует восстановление железа в геме — присоединяется первый электрон (2). Изменение валентности железа увеличивает сродство комплекса Р450-Fе 2+ • RН к молекуле кислорода (3). Появление в центре связывания цитохрома Р450 молекулы O2 ускоряет присоединение второго электрона и образование комплекса Р450-Fе 2+ О2—RН (4). На следующем этапе (5) Fе 2+ окисляется, второй электрон присоединяется к молекуле кислорода Р450-Fе 3+ О2 2- . Восстановленный атом кислорода (О 2- ) связывает 2 протона, и образуется 1 молекула воды. Второй атом кислорода идёт на построение ОН-группы (6). Модифицированное вещество R-ОН отделяется от фермента (7).

Суммарное уравнение реакции гидроксилирования вещества RH ферментами микросомального окисления:

RH + O2 + NADPH + Н + —> ROH + Н2O + NADP + .

Субстратами Р450 могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома Р450 происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.

3. Свойства системы микросомального окисления

Важнейшие свойства ферментов микросомального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции.

Широкая субстратная специфичность. Изоформы Р450

К настоящему времени описано около 150 генов цитохрома Р450, кодирующих различные изоформы фермента. Каждая из изоформ Р450 имеет много субстратов. Этими субстратами могут быть как эндогенные липофильные вещества, модификация которых входит в путь нормального метаболизма этих соединений, так и гидрофобные ксенобиотики, в том числе лекарства. Определённые изоформы цитохрома Р450 участвуют в метаболизме низкомолекулярных соединений, таких как этанол и ацетон.

Регуляция активности микросомальной системы окисления

Регуляция активности микросомальной системы осуществляется на уровне транскрипции или посттранскрипционных изменений. Индукция синтеза позволяет увеличить количество ферментов в ответ на поступление или образование в организме веществ, выведение которых невозможно без участия системы микросомального окисления.

В настоящее время описано более 250 химических соединений, вызывающих индукцию микросомальных ферментов. К числу этих индукторов относят барбитураты, полициклические ароматические углеводороды, спирты, кетоны и некоторые стероиды. Несмотря на разнообразие химического строения, все индукторы имеют ряд общих признаков; их относят к числу липофильных соединений, и они служат субстратами для цитохрома Р450.

Б. Конъюгация — вторая фаза обезвреживания веществ

Вторая фаза обезвреживания веществ — реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков (табл. 12-2).

Таблица 12-2. Основные ферменты и метаболиты, участвующие в конъюгации

источник

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя — сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита — ацетальдегида (рис. 12-22).

Рис. 12-22. Метаболизм этанола. 1 — окисление этанола NАD + -зависимой алкогольдегидрогеназой (АДГ); 2 — МЭОС — микросомальная этанолокисляющая система; 3 — окисление этанола каталазой.

А. Окисление этанола NAD-зависимой алькогольдегидрогеназой

Основную роль в метаболизме этанола играет цинксодержащий NАD + -зависимый фермент — алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции происходит дегидрирование этанола, образуются ацетальдегид и восстановленный кофермент NADH.

Алкогольдегидрогеназа катализирует обратимую реакцию, направление которой зависит от концентрации ацетальдегида и соотношения NADH/NAD + в клетке.

Фермент алкогольдегидрогеназа — димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ1, АДГ2, АДГ3, различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ, и АДГ3. У некоторых восточных народов преобладает изоформа АДГ2, характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т. е. он не является индуцируемым ферментом.

Б. Окисление этанола при участии цитохром Р450-зависимой микросомальной этанолокисляющей системы

Цитохром Р450-зависимая микросомальная этанолокисляющая система (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами. Этот путь окисления этанола происходит при участии одной из изоформ Р450 — изофермента Р450 II Е1. При хроническом алкоголизме окисление этанола ускоряется на 50-70% за счёт гипертрофии ЭР и индукции цитохрома Р450II Е1.

Кроме основной реакции, цитохром Р450 катализирует образование активных форм кислорода (O2 — , Н2O2), которые стимулируют ПОЛ в печени и других органах (см. раздел 8).

В. Окисление этанола каталазой

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.

Г. Метаболизм и токсичность ацетальдегида

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FАD-зависимой альдегидоксидазой и NAD + -зaвиcимoй ацетальдегиддегидрогеназой (АлДГ).

Повышение концентрации ацетальдегида в клетке вызывает индукцию фермента альдегид- оксидазы. В ходе реакции образуются уксусная кислота, пероксид водорода и другие активные формы кислорода, что приводит к активации ПОЛ.

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофермента NАD + .

Полученная в ходе реакции уксусная кислота активируется под действием фермента ацетил-КоА-синтетазы. Реакция протекает с использованием кофермента А и молекулы АТФ. Образовавшийся ацетил-КоА, в зависимости от соотношения АТФ/АДФ и концентрации окса- лоацетата в митохондриях гепатоцитов, может «сгорать» в ЦТК, идти на синтез жирных кислот или кетоновых тел.

В разных тканях организма человека встречаются полиморфные варианты АлДГ. Они характеризуются широкой субстратной специфичностью, разным распределением по клеткам тканей (почки, эпителий, слизистая оболочка желудка и кишечника) и в компартментах клетки. Например, изоформа АлДГ, локализованная в митохондриях гепатоцитов, обладает более высоким сродством к ацетальдегиду, чем цитозольная форма фермента.

Ферменты, участвующие в окислении этанола, — алкогольдегидрогеназа и АлДГ поразному распределены: в цитозоле — 80%/20% и митохондриях — 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид — очень реакционноспособное соединение; он неферментативно может ацетилировать SН-, NН2-группы белков и других соединений в клетке и нарушать их функции. В модифицированных (ацетилированных) белках могут возникать «сшивки», нехарактерные для нативной структуры (например, в белках межклеточного матрикса — эластине и коллагене, некоторых белках хроматина и липопротеинов, формирующихся в печени). Ацетилирование ядерных, цитоплазматических ферментов и структурных белков приводит к снижению синтеза экспортируемых печенью в кровь белков, например, альбумина, который, удерживая Na + , поддерживает коллоидно-осмотическое давление, а также участвует в транспорте многих гидрофобных веществ в крови (см. раздел 14). Нарушение функций альбумина в сочетании с повреждающим действием ацетальдегида на мембраны сопровождается поступлением в клетки по градиенту концентрации ионов натрия и воды, происходит осмотическое набухание этих клеток и нарушение их функций.

Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/ NAD + , что снижает активность NАD + -зависимых ферментов в цитозоле и менее значительно в митохондриях.

Равновесие следующей реакции смещается вправо:

Дигидроксиацетонфосфат + NADH + Н + Глицерол-3-фосфат + NAD + ,

Пируват + NADH + Н + Лактат +NAD + .

Восстановление дигидроксиацетонфосфата, промежуточного метаболита гликолиза и глюконеогенеза, приводит к снижению скорости глюконеогенеза. Образование глицерол-3-фосфата повышает вероятность синтеза жира в печени. Увеличение концентрации NADH по сравнению с NAD + (NADH>NAD + ) замедляет реакцию окисления лактата, увеличивается соотношение лактат/пируват и ещё больше снижается скорость глюконеогенеза (см. раздел 7). В крови возрастает концентрация лактата, это приводит к гиперлактацидемии и лактоацидозу (рис. 12-23).

Рисунок 12-23. Эффекты этанола в печени. 1 —> 2 —> 3 — окисление этанола до ацетата и превращение его в ацетил-КоА (1 — реакция катализируется алкогольдегидрогеназой, 2 — реакция катализируется АлДГ). Скорость образования ацетальдегида (1) часто при приёме большого количества алкоголя выше, чем скорость его окисления (2), поэтому ацетальальдегид накапливается и оказывает влияние на синтез белков (4), ингибируя его, а также понижает концентрацию восстановленного глутатиона (5), в результате чего активируется ПОЛ. Скорость глюконеогенеза (6) снижается, так как высокая концентрация NАDH, образованного в реакциях окисления этанола (1, 2), ингибирует глюконеогенез (6). Лактат выделяется в кровь (7), и развивается лактоацидоз. Увеличение концентрации NАDН замедляет скорость ЦТК; ацетил-КоА накапливается, активируется синтез кетоновых тел (кетоз) (8). Окисление жирных кислот также замедляется (9), увеличивается синтез жира (10), что приводит к ожирению печени и гипертриацилглицеролемии.

Читайте также:  Лучшие корма для кошек с больной печенью

NADH окисляется ферментом дыхательной цепи NADH-дегидрогеназой. Возникновение трансмембранного электрического потенциала на внутренней митохондриальной мембране не приводит к синтезу АТФ в полном объёме. Этому препятствует нарушение структуры внутренней мембраны митохондрий, вызванное мембранотропным действием этилового спирта и повреждающим действием ацетальдегида на мембраны.

Можно сказать, что ацетальдегид опосредованно активирует ПОЛ, так как связывая SH- группы глутатиона, он снижает количество активного (восстановленного) глутатиона в клетке, который необходим для функционирования фермента глутатионпероксидазы (см. раздел 8), участвующего в катаболизме Н2O2. Накопление свободных радикалов приводит к активации ПОЛ мембран и нарушению структуры липидного бислоя.

На начальных стадиях алкоголизма окисление ацетил-КоА в ЦТК — основной источник энергии для клетки. Избыток ацетил-КоА в составе цитрата выходит из митохондрий, и в цитоплазме начинается синтез жирных кислот. Этот процесс, помимо АТФ, требует участия NADPH, который образуется при окислении глюкозы в пентозофосфатном цикле. Из жирных кислот и глицерол-3-фосфата образуются ТАГ, которые в составе ЛПОНП секретируются в кровь. Повышенная продукция ЛПОНП печенью приводит к гипертриацилглицеролемии. При хроническом алкоголизме снижение синтеза фосфолипидов и белков в печени, в том числе и апобелков, участвующих в формировании ЛПОНП, вызывает внутриклеточное накопление ТАГ и ожирение печени.

Однако в период острой алкогольной интоксикации, несмотря на наличие большого количества ацетил-КоА, недостаток оксалоацетата снижает скорость образования цитрата. В этих условиях избыток ацетил-КоА идёт на синтез кетоновых тел, которые выходят в кровь. Повышение в крови концентрации лактата, ацетоуксусной кислоты и β-гидроксибутирата служит причиной метаболического ацидоза при алкогольной интоксикации.

Как уже было сказано ранее, реакция образования ацетальдегида из этанола протекает под действием алкогольдегидрогеназы. Поэтому при повышении концентрации ацетальдегида и NАDН в клетках печени направление реакции меняется — образуется этанол. Этанол — мембранотропное соединение, он растворяется в липидном бислое мембран и нарушает их функции. Это негативно отражается на трансмембранном переносе веществ, межклеточных контактах, взаимодействиях рецепторов клетки с сигнальными молекулами. Этанол может проходить через мембраны в межклеточное пространство и кровь и далее в любую клетку организма.

Д. Влияния этанола и ацетальдегида на метаболизм ксенобиотиков и лекарств в печени

Характер влияния этанола на метаболизм ксенобиотиков и лекарств зависит от стадии алкогольной болезни: начальная стадия алкоголизма, хронический алкоголизм или острая форма алкогольной интоксикации.

Микросомальная этанолокисляющая система (МЭОС) наряду с метаболизмом этанола участвует в детоксикации ксенобиотиков и лекарств. На начальной стадии алкогольной болезни биотрансформация лекарственных веществ протекает более активно вследствие индукции ферментов системы. Этим объясняют феномен лекарственной «устойчивости». Однако при острой интоксикации этиловым спиртом тормозится биотрансформация лекарственных веществ. Этанол конкурирует с ксенобиотиками за связывание с цитохромом Р450II Е1, вызывая гиперчувствительность (лекарственную «неустойчивость») к некоторым принятым одновременно с ним лекарственным препаратам.

Кроме того, у людей, страдающих хроническим алкоголизмом, наблюдают избирательную индукцию изоформы Р450 II Е1 и конкурентное ингибирование синтеза других изоформ, принимающих участие в метаболизме ксенобиотиков и лекарств. При злоупотреблении алкоголем индуцируется также синтез глюкуронил-трансфераз, но снижается образование УДФ-глюкуроната.

Алкогольдегидрогеназа обладает широкой субстратной специфичностью и может окислять разные спирты, в том числе и метаболиты сердечных гликозидов — дигитоксина, дигоксина и гитоксина. Конкуренция этанола с сердечными гликозидами за активный центр алкоголь- дегидрогеназы приводит к снижению скорости биотрансформации этой группы лекарств и повышает опасность их побочного эффекта у лиц, принимающих большие дозы алкоголя.

Повышение концентрации ацетальдегида вызывает целый ряд нарушений в структуре белков (ацетилирование), мембран (ПОЛ), модификацию глутатиона, необходимого для одного из самых важных ферментов обезвреживания ксенобиотиков — глутатионтрансферазы и фермента антиоксидазной защиты глутатион- пероксидазы. Таким образом, представленные данные свидетельствуют, что алкогольное поражение печени сопровождается нарушением важнейшей функции этого органа — детоксикационной.

источник

Печень занимает центральное место в обмене веществ и выполняет многообразные функции:

1. Гомеостатическая — регулирует содержание в крови веществ, поступающих в организм с пищей, что обеспечивает постоянство внутренней среды организма.

2. Биосинтетическая – осуществляет биосинтез веществ «на экспорт» (белки плазмы крови, глюкоза, липиды, кетоновые тела и др.).

3. Обезвреживающая – в печени происходит обезвреживание токсических продуктов метаболизма (аммиак, продукты гниения белков в кишечнике, билирубина и др.), чужеродных соединений и лекарственных веществ.

4. Пищеварительная — связана с синтезом желчных кислот, образованием и секрецией желчи.

5. Выделительная (экскреторная) – обеспечивает выделение некоторых продуктов метаболизма (холестерол, желчные пигменты) с желчью в кишечник.

6. Инактивация гормонов, витаминов.

Большое значение печени определяется ее анатомическим положением. Это промежуточный орган между кишечником и системой общего кровотока. Благодаря печени в общем круге кровообращения изменения концентрации ряда веществ, поступающих в организм с пищей (глюкоза, аминокислоты и др.), незначительны.

Масса печени составляет 2–3% от веса тела, у взрослого человека – 1,2 – 2 кг.

Масса печени и её химический состав подвержены изменениям, в особенности, при патологических состояниях. Для осуществления обменных функций печень получает от 1/4 до 1/3 крови минутного объема сердца, что составляет около 1,5 литра в минуту. 70% крови поступает в печень по воротной вене, 30 % — по печеночной артерии.

Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии.

Это достигается за счет нескольких механизмов.

1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе, фосфорилирует глюкозу до глюкозо-6-фосфата. Следует отметить, что глюкокиназа в отличие от гексокиназы, содержится, только в печени и β-клетках островков Лангерганса. Активность глюкокиназы в печени в 10 раз превышает активность гексокиназы. Кроме того, глюкокиназа в противоположность гексокиназе имеет более высокое значение Кm для глюкозы (т. е. меньшее сродство к глюкозе).

После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и увеличивает поглощение глюкозы печенью. Благодаря синхронной работе гексокиназы и глюкокиназы печень быстро и эффективно фосфорилирует глюкозу до глюкозо-6-фосфата, обеспечивая нормогликемию в системе общего кровотока. Далее глюкозо-6-фосфат может метаболизироваться по нескольким направлениям (рис. 28.1).

2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100–150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания.

3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.

Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.

4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.

5. В печени происходит синтез глюкуроновой кислоты.

Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов

Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:

1. синтез желчных кислот и образование желчи;

2. β-окисление жирных кислот;

3. биосинтез жирных кислот;

4. образование кетоновых тел;

5. распад и синтез фосфолипидов;

6. синтез холестерола и образование его эфиров; соотношение эфиры холестерина/свободный холестерин в норме составляет примерно 0,5 – 0,7 %; снижение этого коэффициента до 0,3 – 0,4 % наблюдается при поражениях печени и является неблагоприятным признаком;

7. основное место синтеза липопротеинов очень низкой плотности и липопротеинов высокой плотности;

8. гидроксилирование витамина D по 25-му положению.

Печень играет центральную роль в обмене белков и других азотсодержащих соединений.

Она выполняет следующие функции:

1. синтез специфических белков плазмы: — в печени синтезируется: 100 % альбуминов, 75 – 90 % α-глобулинов, 50 % β-глобулинов

2. единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;

3. активно протекают реакции трансаминирования и дезаминирования аминокислот;

4. биосинтез мочевины происходит исключительно в печени;

5. образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;

6. синтез креатина и холина.

В печени происходит детоксикация различных веществ.

Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей или в качестве источников энергии. К ним относят лекарственные препараты, продукты хозяйственной деятельности человека, вещества бытовой химии и пищевой промышленности (консерванты, красители).

Обезвреживание нормальных метаболитов

1. Обезвреживание пигментов. В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах и распад в гепатоцитах поступающего из кишечника уробилиногена до непигментных продуктов.

2. Обезвреживание аммиака. Аммиак – высокотоксичное соединение, особо опасное для мозга. Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины в печени. Мочевина – малотоксичное соединение и легко выводится из организма с мочой.

3. Инактивация гормонов. Печени принадлежит значительная роль в инактивации гормонов. Многие пептидные гормоны гидролизуются в печени при участии протеолитических ферментов. Например, фермент инсулиназа гидролизует пептидные цепи А и В инсулина. Катаболизм адреналина и норадреналина происходит в печени путем дезаминирования моноаминооксидазой, метилирования и конъюгации с серной и глюкуроновой кислотами. Продукты метаболизма выводятся с мочой.

Обезвреживание большинства ксенобиотиков происходит в 2 фазы:

1. фаза химической модификации;

Химическая модификация – это процесс ферментативной модификации исходной структуры ксенобиотика, в результате которой происходит:

1. разрыв внутримолекулярных связей;

2. присоединение к молекуле дополнительных функциональных групп (-СН3, -ОН, -NH2),

3. удаление функциональных групп путем гидролиза.

1. окисление (микросомальное, пероксисомальное);

4. ацетилирование, метилирование, гидроксилирование;

Система обезвреживания включает множество разнообразных ферментов (оксидоредуктазы, изомеразы, лиазы, гидролазы), под действием которых практически любой ксенобиотик может быть модифицирован. Наиболее активны ферменты метаболизма ксенобиотиков в печени.

В результате химической модификации, как правило, ксенобиотики становятся более гидрофильными, повышается их растворимость, и они легче выделяются из организма с мочой. Кроме этого, дополнительные функциональные группы необходимы, чтобы вещество вступило в фазу конъюгации.

Коньюгация – процесс образования ковалентных связей между ксенобиотиком и эндогенным субстратом. Образование связей происходит, как правило, по ОН- или NH2-группе ксенобиотика. Образовавшийся коньюгат малотоксичен и легко выводится из организма с мочой.

Читайте также:  Печеночный торт из говяжьей печени без молока

Выделяют глюкуронидную, сульфатную, тиосульфатную, ацетильную коньюгации. В них принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: УДФ-глюкуронат, ФАФС, тиосульфат, ацетил-КоА.

Рис. 28.2. Распад гемоглобина

1. Катаболизм гема. Билирубин образуется при распаде гемоглобина (рис. 28.2). Этот процесс протекает в клетках печени, селезенки и костного мозга. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250–350 мг. Дальнейший метаболизм билирубина происходит в печени.

2. Метаболизм билирубина. Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным) или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.

Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.

Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой. Реакцию катализирует фермент УДФ-глюкуронилтрансфераза (рис. 28.3). Образующийся билирубиндиглюкуронид получил название прямого (коньюгированного) билирубина или связанного. Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.

Рис. 28.3. Образование билирубиндиглюкуронида

Прямой билирубин – это нормальный компонент желчи, попадающий в кровь в незначительном количестве. Он может проходить через почечный барьер, но в крови в норме его мало, поэтому в моче обычными лабораторными методами он не определяется.

Вместе с желчью прямой билирубин выводится в тонкий кишечник. В кишечнике билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами. Освободившийся билирубин под действием кишечной микрофлоры восстанавливается с образованием сначала мезобилирубина, а затем мезобилиногена (уробилиногена). Небольшая часть уробилиногенов, всасываясь в тонком кишечнике и верхнем отделе толстого, через систему воротной вены попадает в печень, где практически полностью разрушается до дипиррольных соединений. Уробилиноген при этом в общий кровоток не поступает и в моче не определяется.

Основная часть уробилиногена поступает в толстый кишечник, где под влиянием микрофлоры подвергается дальнейшему восстановлению с образованием стеркобилиногена. Образовавшийся стеркобилиноген почти полностью выделяется с калом. На воздухе он окисляется и превращается в стеркобилин, являющийся одним из пигментов кала. Небольшая часть стеркобилиногена попадает путем всасывания через слизистую толстого кишечника в систему нижней полой вены (через геморроидальные вены), доставляется в почки и выводится с мочой (4 мг/сутки).

Распределение желчных пигментов в норме: кровь – общий билирубин – 8,5 – 20,5 мкмоль/л; непрямой билирубин – 1,7 – 17,1 мкмоль/л; прямой билирубин – 2,2 – 5,1 мкмоль/л; моча – стеркобилиноген – 4 мг/сутки; кал – стеркобилиноген.

Желтуха – это заболевание, характеризующееся желтой окраской кожи и слизистых в результате накопления билирубина. Основная причина этого явления – гипербилирубинемия.

Причинами гипербилирубинемии могут быть:

1. усиление гемолиза эритроцитов и увеличение образования билирубина, превышающее способность печени экскретировать его;

2. повреждение печени, приводящее к нарушению секреции билирубина в желчь;

3. закупорка желчевыводящих протоков печени.

Во всех случаях содержание билирубина в крови повышается. При достижении определенной концентрации (выше 50 мкмоль/л) он диффундирует в ткани, окрашивая их в желтый цвет.

Определение билирубина и других желчных пигментов в крови и в моче имеет важное значение для дифференциальной диагностики желтух различной этиологии.

Гемолитическая желтуха развивается вследствие интенсивного гемолиза эритроцитов при гемолитических анемиях, вызванных сепсисом, лучевой болезнью, переливанием несовместимых групп крови, отравлением сульфаниламидами и т. д. Усиленный гемолиз эритроцитов приводит к интенсивному образованию в клетках РЭС непрямого билирубина. Печень не способна утилизировать в короткое время весь образующийся непрямой билирубин, он накапливается в крови и тканях. Так как печень обезвреживает повышенное количество непрямого билирубина, в больших количествах образуется прямой билирубин в печени. Поступление значительных количеств билирубина в кишечник ведет к усиленному образованию и выделению с калом и мочой стеркобилиногена. Кал приобретает более интенсивное окрашивание.

Характерные признаки гемолитической желтухи:

1. кровь – повышение общего билирубина и непрямого билирубина; концентрация прямого билирубина – в норме;

2. моча – отсутствие билирубина и положительная реакция на стеркобилиноген (который в больших количествах, чем обычно, поступает в почки из толстого кишечника);

3. кал – повышение количества стеркобилиногена (темная окраска).

Паренхиматозная желтуха обусловлена повреждением гепатоцитов при острых вирусных инфекциях, хроническом и токсическом гепатитах. Причина повышения концентрации билирубина – нарушение функций и некроз части печеночных клеток.

1. В результате некроза гепатоцитов прямой билирубин частично попадает в кровь, его концентрация увеличивается. Прямой билирубин хорошо растворим в воде и экскретируется с мочой.

2. Экскреция жёлчи нарушена, в кишечник попадает меньше билирубина чем в норме, поэтому количество образующегося в толстом кишечнике стеркобилиногена также снижена. Кал гипохоличный.

3. При прогрессирующем гепатите нарушается процессы коньюгации билирубина в печени, вследствие этого в крови накапливается непрямой билирубин.

4. Нарушается процесс разрушения уробилиногена, поступающего в печень из кишечника по воротной вене. Он попадает в общий кровоток и экскретируется с мочой (в норме в моче отсутствует).

Характерные признаки паренхиматозной желтухи:

1. кровь – повышение общего билирубина, прямого и непрямого билирубина;

2. моча – положительная реакция на билирубин и уробилиноген, интенсивная окраска;

3. кал – снижение количества стеркобилиногена, гипохоличный кал.

Механическая желтуха развивается при нарушении желчевыделения в двенадцатиперстную кишку. Основная причина – частичная или полная закупорка желчных протоков, например при жёлчно-каменной болезни, опухолях поджелудочной железы, желчного пузыря, печени. Так как нормальные пути экскреции коньюгированного билирубина заблокированы, происходит его поступление в кровь. В крови увеличивается содержание прямого билирубина, он выводится с мочой, придавая ей насыщенный оранжево-коричневый цвет. При полной закупорке общего желчного протока желчь не попадает в кишечник, не происходит образование стеркобилиногена, кал обесцвечен и в моче отсутствует уробилиноген.

Характерные признаки механической желтухи:

1. кровь – повышение общего билирубина, прямого билирубина. При тяжелых формах механической желтухи может нарушаться детоксикационная функция печени и уровень непрямого билирубина в крови также повышается. Однако прямого билирубина оказывается всегда больше непрямого;

2. моча – положительная реакция на билирубин, уробилиноген отсутствует, интенсивная окраска;

3. кал – резкое снижение или отсутствие стеркобилиногена, ахоличный кал.

Проявления обтурационной и паренхиматозной желтухи очень сходны. Критерием для дифференцированного диагноза является наличие уробилиногена в моче (при паренхиматозной желтухе) и резкое увеличение прямого билирубина в крови (при обтурационной).

Разновидность гемолитической желтухи новорожденных − «физиологическая желтуха». Наблюдается в первые дни жизни ребенка.

Причинами повышения концентрации непрямого билирубина в крови являются:

1. усиленный гемолиз эритроцитов, содержащих фетальный гемоглобин;

2. недостаточный синтез в печени УДФ-глюкуроната;

3. недостаточность функции белков и ферментов печени, ответственных за поглощение, коньюгацию и секрецию прямого билирубина, в частности, значительно снижена активность УДФ-глюкуронилтрансферазы.

У детей в течение первых двух недель жизни коньюгирующая способность печени составляет 1/5 по сравнению с таковой у взрослых.

В тяжелых случаях желтухи новорожденных, когда концентрация билирубина в крови превышает 340 мкмоль/л, он проходит через гематоэнцефалический барьер головного мозга и вызывает его поражение (билирубиновая энцефалопатия). Легкая форма послеродовой гипербилирубинемии встречается практически у всех новорожденных.

Печеночная недостаточность – состояние, объединяющее различные нарушения функции печени, которые могут в дальнейшем полностью компенсироваться, прогрессировать или длительно стабилизироваться. В тяжелых случаях печеночная недостаточность заканчивается печеночной комой.

Причиной печеночной недостаточности является целый ряд заболеваний и токсические агенты, вызывающие повреждения паренхимы печени:

1. острый вирусный гепатит;

2. алкогольный цирроз или цирроз другой этиологии;

4. обширные травмы или ожоги;

6. отравление гепатотропными ядами (ССl4) и лекарственными препаратами.

При печеночной недостаточности происходит снижение функций этого органа, которое и определяет клиническую картину в каждом конкретном случае. Естественно, что при печеночной недостаточности происходит не изолированное снижение какой-либо одной функции печени, а ряд этих функций изменяется в определенной степени. Наиболее важным фактором, определяющим тяжесть состояния, является нарушение белоксинтезирующей и обезвреживающей функций печени.

Признаки печеночной недостаточности:

1. низкий уровень общего белка и альбуминов;

2. снижение концентрации факторов свертывания крови, синтезируемых в печени (вначале снижается синтез YII фактора, затем – II, IX, X); удлинение протромбинового времени и развитие геморрагических проявлений;

4. снижение концентрации мочевины в плазме крови и накопление аммиака;

5. тяжелые нарушения обмена электролитов – гипокалемия, гипонатремия, гипокальцемия, развивается гипокалемический внеклеточный алкалоз в сочетании с внутриклеточным ацидозом, что усиливает токсическое действие аммиака;

6. увеличение содержания в крови фенолов и производных индола, ароматических и серосодержащих аминокислот, низкомолекулярных жирных кислот (масляная, валерьяновая, капроновая и др.); эти соединения обладают церебротоксическим действием.

Повреждение печени обычно обратимо вследствие высокой регенеративной способности данного органа, но метаболические нарушения при печеночной недостаточности достаточно тяжелые. Накопление токсических веществ, в первую очередь, аммиака, билирубина и чужеродных соединений, является основной причиной развития энцефалопатии и наступления печеночной комы.

Биохимические лабораторные тесты могут быть высокочувствительными индикаторами повреждения печени. Результаты биохимических анализов указывают на природу болезни печени, позволяют оценить степень тяжести патологического процесса и гораздо реже дают основания для постановки специфического диагноза.

Для оценки функционального состояния печени при разных заболеваниях (острый и хронический гепатит, цирроз, холестаз, опухоли) используют комплекс биохимических показателей и тестов.

1. Исследование пигментного обмена – определение в крови и моче билирубина и продуктов его биотрансформации.

2. Определение альбумина и других белков сыворотки крови позволяет оценить белоксинтезирующую функцию печени. Выраженность изменений зависит от тяжести и длительности заболевания (концентрация альбумина снижается только при хронических заболеваниях печени).

3. Определение активности ряда ферментов:

• АсАТ и АлАТ – активность трансаминаз увеличивается при повреждении гепатоцитов;

• γ-глутамилтрансфераза (ГГТ), активность фермента является очень чувствительным, но не специфичным показателем заболеваний печени, ее изолированное повышение может быть следствием злоупотребления алкоголем;

• щелочная фосфатаза, её активность повышена при внутри- и внепеченочном холестазе.

4. Определение активности специфических ферментов печени:

Изменение активности этих ферментов специфично для повреждений печени и может быть использовано для тонкой диагностики заболеваний этого органа.

5. Осадочные пробы – представляют группу методов, основанных на взаимодействии различных реагентов с коллоидной системой белков сыворотки крови, при котором развивается преципитационное помутнение или осаждение. Устойчивость коллоидной системы крови нарушается главным образом из-за диспротеинемии, развивающейся при хронических диффузных заболеваниях печени.

• Тимоловая проба – один из самых надежных тестов оценки функционального состояния печени.

источник