Меню Рубрики

Органоиды клетки печени в которых протекает глюконеогенез

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы, протекающий в основном в печени, и, менее интенсивно, – в корковом веществе почек и слизистой оболочке кишечника.

Функция глюконеогенеза – поддержание уровня глюкозы в крови при длительном голодании и интенсивных физических нагрузках. Постоянное поступление глюкозы в качестве источника энергии особенно необходимо для нервной ткани и эритроцитов.

Субстраты глюконеогенеза – ПВК, молочная кислота, глицерин, аминокислоты. Их включение в глюконеогенез зависит от физиологического состояния организма.

Большинство реакций глюконеогенеза являются обратными гликолизу. Они катализируются теми же ферментами, что и соответствующие реакции гликолиза.

Три реакции гликолиза (гексокиназная (1), фосфофруктокиназная (3), пируваткиназная (10)) необратимы, и при глюконеогенезе на этих этапах работают другие ферменты.

Синтез глюкозы из ПВК.

1-ый этап – образование фосфоенолпирувата из ПВК.

а) карбоксилирование ПВК под влиянием пируваткарбоксилазы с образованием оксалоацетата в митохондрии:

Пируваткарбоксилаза – митохондриальный фермент, аллостерическим активатором которого является ацетил-KоА. Для оксалоацетата мембрана митохондрий непроницаема, поэтому оксалоацетат в митохондриях превращается в малатпри участии митохондриальной НАД-зависимой малатдегидрогеназы:

Малат выходит из митохондрии через митохондриальную мембрану в цитозоль, где под действием цитоплазматической НАД-зависимой малатдегидрогеназы окисляется в оксалоацетат:

б) в цитозоле клетки протекает декарбоксилирование и фосфорилирование оксалоацетата с образованием фосфоенолпирувата; фермент – фосфоенолпируваткарбоксикиназа:

2-ой этап – превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат.

Фосфоенолпируват в результате обратимых реакций гликолиза превращается во фруктозо-1,6-фосфат. Далее следует необратимая фосфофруктокиназная реакция гликолиза. Глюконеогенез идёт в обход этой реакции:

3-ий этап – образование глюкозы из фруктозо-6-фосфата.

Фруктозо-6-фосфат превращается в глюкозо-6-фосфат, который дефосфолирируется (реакция идёт в обход гексокиназной) под влиянием глюкозо-6-фосфатазы:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9751 — | 7375 — или читать все.

85.95.189.26 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот.

У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе).

Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется с образованием оксалоацетата:

Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):

Установлено, что в процессе образования фосфоенолпирувата участвуют ферменты цитозоля и митохондрий.

Первый этап синтеза протекает в митохондриях (рис. 10.6). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостери-ческим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же, в митохондриях, восстанавливается в малат:

Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН/НАД + относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии через митохондриальную мембрану. В цитозоле отношение НАДН/НАД + очень мало, и малат вновь окисляется при участии цитоплазматической НАД-зависимой малатдегидрогеназы:

Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитозоле клетки.

Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфо-енолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:

Рис. 10.6. Образование фосфоенол-пирувата из пирувата. 1 — пируваткарбоксилаза; 2 — малатде-гидрогеназа (митохондриальная); 3 -малатдегидрогеназа (цитоплазматиче-ская); 4 — фосфоенолпируват-карбокси-киназа.

Рис. 10.7. Гликолиз и глюконеогенез. Красными стрелками указаны «обходные» пути глюконеогенеза при биосинтезе глюкозы из пирувата и лактата; цифры в кружках обозначают соответствующую стадию гликолиза.

Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т.е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:

На рис. 10.7 представлены «обходные» реакции глюконеогенеза при биосинтезе глюкозы из пирувата и лактата.

Регуляция глюконеогенеза. Важным моментом в регуляции глюконеоге-неза является реакция, катализируемая пируваткарбоксилазой. Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидроге-назного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу.

Другой важный момент в регуляции глюконеогенеза – реакция, катализируемая фруктозо-1,6-бисфосфатазой – ферментом, который ингибиру-ется АМФ. Противоположное действие АМФ оказывает на фосфофруктокиназу, т. е. для этого фермента он является аллостерическим активатором. При низкой концентрации АМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза. Напротив, когда величина отношения АТФ/АМФ мала, в клетке наблюдается расщепление глюкозы.

В 1980 г. группой бельгийских исследователей (Г. Херс и др.) в ткани печени был открыт фруктозо-2,6-бисфосфат, который является мощным регулятором активности двух перечисленных ферментов:

Фруктозо-2,6-бисфосфат активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. Повышение в клетке уровня фруктозо-2,6-бис-фосфата способствует усилению гликолиза и уменьшению скорости глю-конеогенеза. При снижении концентрации фруктозо-2,6-бисфосфата отмечается обратная картина.

Установлено, что биосинтез фруктозо-2,6-бисфосфата происходит из фруктозо-6-фосфата при участии АТФ, а распадается он на фруктозо-6-фосфат и неорганический фосфат. Биосинтез и распад фруктозо-2,6-бис-фосфата катализируется одним и тем же ферментом, т.е. данный фермент бифункционален, он обладает и фосфокиназной, и фосфатазной активностью:

Показано также, что бифункциональный фермент в свою очередь регулируется путем цАМФ-зависимого фосфорилирования. Фосфорилирова-ние приводит к увеличению фосфатазной активности и снижению фосфо-киназной активности бифункционального фермента. Этот механизм объясняет быстрое воздействие гормонов, в частности глюкагона, на уровень фруктозо-2,6-бисфосфата в клетке (см. главу 16).

Активность бифункционального фермента регулируется также некоторыми метаболитами, среди которых наибольшее значение имеет гли-церол-3-фосфат. Действие глицерол-3-фосфата на фермент по своей направленности аналогично эффекту, который наблюдается при его фосфори-лировании с помощью цАМФ-зависимых протеинкиназ.

В настоящее время фруктозо-2,6-бисфосфат, помимо печени, обнаружен и в других органах и тканях животных, а также у растений и микроорганизмов.

Показано, что глюконеогенез может регулироваться и непрямым путем, т.е. через изменение активности фермента, непосредственно не участвующего в синтезе глюкозы. Так, установлено, что фермент гликолиза пиру-ваткиназа существует в 2 формах – L и М. Форма L (от англ. liver – печень) преобладает в тканях, способных к глюконеогенезу. Эта форма ингиби-руется избытком АТФ и некоторыми аминокислотами, в частности ала-нином. М-форма (от англ. muscle – мышцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит инги-бирование L-формы пируваткиназы. Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеоге-незу.

Наконец, интересно отметить, что между гликолизом, интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюко-неогенезом, особенно характерным для печеночной ткани, существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избыток молочной кислоты, диффундирующей в кровь, в печени значительная ее часть превращается в глюкозу (глюконеогенез). Такая глюкоза затем может быть использована как энергетический субстрат, необходимый для деятельности мышечной ткани. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени может быть представлена в виде схемы:

источник

В клетках организма всегда существует потребность в глюкозе:

o для эритроцитов глюкоза является единственным источником энергии,

o нервная ткань потребляет около 120 г глюкозы в сутки, что составляет до 70% глюкозы образующейся в печени, притом эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она

способна получать энергию из неуглеводных источников,

o глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях – при низком содержании углеводов в пище, голодании, длительной физической работе – организм должен иметь возможность получить глюкозу. Это достигается процессом глюконеогенеза .

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот. Процесс вклю-

чает все обратимые реакции гликолиза, и особые обходные пути , т.е. он не полностью по-

вторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках . Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

Как указывалось ранее, в гликолизе существуют три необратимые реакции: пируват-

киназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). На этих ре-

акциях существуют энергетические барьеры, которые обходятся с помощью дополнительных реакций.

Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них – глюкогенных – полностью включаются в молекулу глюкозы, некоторых – смешанных – частично.

Кроме получения глюкозы, глюконеогенез обеспечивает и уборку «шлаков» – лактата , постоянно образуемого в эритроцитах или при мышечной работе и глицерола , являющегося продуктом липолиза в жировой ткани.

На этом этапе глюконеогенеза работают два основных фермента – в митохондриях пи-

руваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа .

В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Необходимо отметить, что эта реакция идет в клетке постоянно, являясь анаплеротической (пополняюшей) реакцией ЦТК.

Далее оксалоацетат должен попасть в цитозоль и превратиться в фосфоенолпируват. Однако дело осложняется непроницаемостью мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК. Повернуть малатдегид-

рогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β -окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.

В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат.

В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Тимин О.А. Лекции по биологической химии

Второе препятствие на пути синтеза глюкозы – фосфофруктокиназная реакция – преодолевается с помощью фермента фруктозо-1,6-дифосфатазы . Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким образом, эти ткани способны синтезировать фруктозо-6-фосфат и глюкозо-6-фосфат.

Последняя реакция катализируется глюкозо-6-фосфатазой . Она имеется только в печени и почках , следовательно, только эти ткани могут продуцировать свободную глюкозу.

Г ЛЮКОЗО — ЛАКТАТНЫЙ И ГЛЮКОЗО — АЛАНИНОВЫЙ ЦИКЛЫ

Глюкозо-лактатный цикл (цикл Кори) – это связь глюконеогенеза в печени и образования лактата в эритроцитах или мышцах из глюкозы. В эритроцитах молочная кислота об-

Строение и обмен углеводов

разуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты является следствием гликолиза при очень интенсивной , субмаксимальной мощности, работе . Но даже при работе низкой и средней интенсивности в скелетной мышце образуется некоторое количество лактата. Утилизоваться он может только одним способом – превратиться в пировиноградную кислоту. Однако, сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента ЛДГ-5.

Поэтому во время и после нагрузки (при восстановлении) лактат удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой. Большая часть лактата захватывается гепатоцитами , окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза . Полученная глюкоза используется самим гепатоцитом или выходит в кровь, пополняя запасы в мышце или других клетках.

Целью глюкозо-аланинового цикла также является уборка пирувата , но, кроме этого решается еще одна немаловажная задача – уборка лишнего азота из мышцы. При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α -кетоглутаратом. Полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа передается на синтез мочевины, пируват используется для синтеза глюкозы

Глюкоза, образованная в печени из лактата или аланина, возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена. Также она может распределиться по другим органам.

Кроме мышечной работы, глюкозо-аланиновый цикл активируется во время голодания, когда мышечные белки распадаются и многие аминокислоты используются в качестве источника энергии, а их азот необходимо доставить в печень.

источник

Глюконеогенез — это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере — почки и клетки слизистой кишечника. Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Рисунок 11. Глюконеогенез. Ферменты: 1- пируваткарбоксилаза, 2- фосфоенолпируваткарбоксикиназа, 3- фосфатаза фру-1,6-дифосфата, 4- глюкозо-6-фосфатаза.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Таких циклов существует три — соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов, в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой—глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой.

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента — фосфорилиро-ванном и дефосфорилированном — один из актив­ных центров ингибирован.

Дата добавления: 2015-09-18 ; просмотров: 2048 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Глюконеогенез — синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, так называемые гликогенные аминокислоты и ряд других соединении. Иными словами, предшественниками глюкозы в глюконеогенезе могут быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (корковое вещество).

Большинство стадий глюконеогенеза представляет собой обращение реакций гликолиза. Только три реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процессе глюконеогенеза на трех этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется (В реакцию вступает так называемая активная форма СО2, в образовании которой, помимо АТФ, участвует биотин.) с образованием оксалоацетата:

Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксикиназы (Название фермента дано по обратной реакции) превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):

В дальнейшем было установлено, что в процессе образования фосфоенолпирувата участвуют как ферменты цитоплазмы, так и митохондрий.

Первый этап локализуется в митохондриях (рис. 88). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же в митохондриях восстанавливается в малат:

Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН2/НАД относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии, проходя митохондриальную мембрану. В цитоплазме отношение НАДН2/НАД очень мало и малат вновь окисляется в оксалоацетат при участии цитоплазматической НАД-зависимой малатдегидрогеназы:

Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитоплазме клетки. На рис. 89 изображен изложенный выше процесс образования фосфоенолпирувата из пирувата.

Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-дифосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:

Следует заметить, что фруктозобисфосфатаза ингибируется АМФ и активируется АТФ, т. е. данные нуклеотиды оказывают на фруктозобисфосфатазу действие, противоположное их действию на фосфофруктокиназу (см. с. 329). Когда концентрация АМФ мала, а концентрация АТФ велика, то стимулируется глюконеогенез. Напротив, когда величина отношения АТФ/АМФ низка, в клетке происходит расщепление глюкозы.

Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т. е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:

На рис. 89 представлены «обходные» реакции при биосинтезе глюкозы из пирувата и лактата. Интересно отметить, что между гликолизом, интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюконеогенезом, особенно характерным для печеночной ткани, существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избыток молочной кислоты, диффундирующей в кровь. Значительная часть избытка лактата в печени превращается в глюкозу (глюконеогенез). Образовавшаяся в печени глюкоза затем может быть использована как энергетический субстрат, необходимый для деятельности мышечной ткани. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени представлена на схеме.

Клетки, плохо снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако большинство тканей энергию получает в основном за счет аэробных процессов (например, окисления пирувата). При гликолизе пировиноградная кислота восстанавливается и превращается в молочную кислоту — конечный продукт анаэробного обмена; в случае же аэробного превращения пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил-КоА, который затем может окисляться до воды и СО2.

Окисление пирувата до ацетил-КоА (окислительное декарбоксилирование пировиноградной кислоты)

Окисление пирувата до ацетил-КоА, катализируемое пируватдегидрогеназной системой, протекает в несколько стадий (рис. 90). В нем принимают участие три фермента (пируватдегидрогеназа, липоатацетилтрансфераза, липоамиддегидрогеназа) и пять коферментов (НАД, ФАД, тиаминдифосфат, амид липоевой кислоты и коэнзим А). Суммарно реакцию можно написать следующим образом:

Пируват + НАД + HS-KoA —> Ацетил-КоА + НАДН2 + СО2

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Первая стадия окислительного декарбоксилирования пирувата катализируется ферментом пируватдегидрогеназой (E1); коферментом в этой реакции служит ТДФ. Отщепляется СО2, и из пирувата образуется гидроксиэтильное производное ТДФ:

Во второй стадии процесса оксиэтильная группа комплекса E1 — ТДФ-СНОН-СН3 переносится на амид липоевой кислоты, который в свою очередь связан с ферментом липоатацетилтрансферазой (Е2). Образуется ацетил, связанный с восстановленной формой амида липоевой кислоты, и освобождается ТДФ-Е1.

Ацетил-липоат (связанный с ферментным комплексом) затем взаимодействует с коэнзимом А (третья стадия). Реакция катализируется ферментом липоат-ацетилтрансферазой (Е2). Образуется ацетил-КоА, который отделяется от ферментного комплекса:

В четвертой стадии происходит окисление восстановленной липоевой кислоты до ее дисульфидной формы. Реакция катализируется ферментом липоамид-дегидрогеназой (Е3), которая содержит кофермент ФАД, способный к восстановлению:

Наконец, в пятой стадии Е3-ФАДН2 окисляется за счет НАД. В результате реакции регенерирует окисленная форма Е3-ФАД и образуется НАДН2:

Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальше окислению с образованием в конечном счете СO2 и Н2O. Иными словами, полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот или цикле Кребса. Этот процесс, так же как и окислительное декарбоксилирование пирувата, происходит в митохондриях клеток.

У высших растений и микроорганизмов в процессе глюконеогенеза важную роль играет глиоксилатный цикл. Благодаря данному циклу высшие растения и микроорганизмы способны превращать двууглеродные метаболиты, а следовательно, и ацетил-КоА в углеводы. В животных клетках отсутствуют два ключевых фермента глиоксилатного цикла: изоцитратлиаза и малатсинтаза, а потому в них этот цикл осуществляться не может.

Общую схему глиоксилатного цикла можно представить так:

источник

Выход АТФ при аэробном распаде глюкозы.

Образование АТФ при гликолизе может идти 2 путями:

1. Субстратным фосфорилированием, когда для синтеза АТФ из АДФ и Н3РО4 используется энергия макроэргической связи субстрата.

2. Окислительным фосфорилированием за счет энергии переноса электронов и протонов по ЦПЭ (комплексы тканевого дыхания).

В аэробных условиях «экономятся» 2 молекулы НАДН → дыхательная цепь и образуют 3 · 2 = 6 молекул АТФ. (Дыхательная цепь, окисляющая НАДН имеет 3 пункта фосфорилирования – это I, III, IV. Комплексы дыхательной цепи на одну молекулу О2 – 3 молекулы Н3РО4. (Р/О = 3) – коэффициент фосфорилирования.) Учитывая 2 молекулы АТФ, синтезированные в реакциях фосфорилирования до стадии образования пирувата, на первом этапе получаем 2АТФ + 6АТФ = 8АТФ.

Если в дыхательной цепи окисляются ФАД-зависимые субстраты, то пунктов сопряжения остается 2: III и IV комплексы (Р/О = 2) на одну молекулу О2 – 2 молекулы Н3РО4.

Таким образом на третьем этапе за счет водороддонорной и собственно энергетической функции цикла Кребса получаем 24 АТФ.

В сумме на всех трех этапах аэробного окисления 1 моля глюкозы получаем 38 молей АТФ.

Полная энергия распада глюкозы составляет 2880 кДж/моль. Свободная энергия гидролиза высокоэнергетической связи АТФ равна 50 кДж/моль. Для синтеза АТФ при окислении глюкозы используется 38 · 50 = 1900 кДж, что составляет 65% от всей энергии распада глюкозы. Это максимально возможная эффективность использования энергии глюкозы.

Значение анаэробного гликолиза.

Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т.е. в условиях, когда снабжение кислородом ограничено.

Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.

Глюконеогенез– это синтез глюкозы из веществ неуглеводной природы.

Главные субстраты глюконеогенеза:

Пируват

Лактат – продукт анаэробного гликолиза в эритроцитах и работающих мышцах, используется в глюконеогенезе постоянно.

Глицерин – высвобождается при гидролизе жиров или при физической нагрузке.

Аминокислоты – образуются при распаде мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.

Субстраты цикла Кребса

Жирные кислоты служить источником глюкозы не могут.

Схема включения субстратов в глюконеогенез.

Глюконеогенез обеспечивает потребность организма в глюкозе в тех случаях, когда понижение уровня глюкозы не компенсируется гликогеном печени. Например: при относительно длительном голодании или резком ограничении углеводов в питании.

Поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. В анаэробных условиях мышцы для энергетических нужд используют только глюкозу;

Постоянное поступление глюкозы в качестве источника энергии абсолютно необходимо нервной ткани (мозгу) и эритроцитам.

Глюкоза необходима и жировой ткани для синтеза глицерина – составной части липидов.

Процесс глюконеогенеза в основном протекает в печени и менее интенсивно в корковом веществе почек, а также слизистой оболочке кишечника.

Реакции гликолиза протекают в цитозоле, а часть реакций глюконеогенеза протекает в митохондриях.

Включение различных субстратов в гликонеогенез зависит от физиологического состояния организма.

Суммарное уравнение глюконеогенеза:

Наиболее значимо образование глюкозы, в первую очередь из пирувата, так как в него легко превращается основная гликогенная аминокислота – аланин, а так же молочная кислота, которая, поступая в значительных количествах в кровь из мышц после физической нагрузки, в печени под действием ЛДГ окисляется в пируват. В процессе катаболизма субстратов цикла Кребса образуется оксалоацетат, который также включается в реакции глюконеогенеза.

Основные стадии глюконеогенеза совпадают с реакциями гликолиза и катализируются теми же ферментами , только протекают они в обратном направлении.

Однако имеется очень важная особенность, обусловленная тем, что 3 реакции в гликолизе, катализируемые киназами: гексокиназой, фосфофруктокиназой и пируваткиназой, необратимы. Эти барьеры обходятся в глюконеогенезе с помощью специальных реакций.

Рассмотрим реакции глюконеогенеза, которые отличаются от реакций гликолиза и происходят в глюконеогенезе с использованием других ферментов.

  1. Образование фосфоенолпирувата из пирувата (обход пируваткиназной реакции).

Реакция катализируется двумя ферментами: пируваткарбоксилазой и фосфоенолпируваткарбоксикиназой.

Первая реакция протекает в митохондриях. Фермент – пируваткарбоксилаза является биотинзависимым (реакции карбоксилирования в клетках протекают с участием витамина Н):

Пируват + СО2 + АТФ + Н2О пируваткарбоксилаза Оксалоацетат (ЩУК) +АДФ + Н3РО4

Реакция протекает с использованием АТФ.

Затем в реакцию вступает второй собственный фермент глюконеогенеза – фосфоенолпируваткарбоксикиназа, реакция протекает в цитозоле:

ЩУК + ГТФ фосфоенолпируваткарбокскниаза Фосфоенолпируват + СО2 + ГДФ

В этой реакции образование мактоэргической связи фосфоенолпирувата осуществляется за счет энергии ГТФ, одновременно происходит декарбоксилирование оксалоацетата.

Далее следуют реакции гликолиза в обратном направлении до стадии образования фруктозо-1,6-дифосфата.

  1. Гидролиз фруктозо-1,6-дифосфата (обход фосфофруктокиназной реакции).

Фруктозо-1,6-дифосфат +Н2О Фруктозобифосфатаза Фруктозо-6-фосфат + Н3РО4

  1. Гидролиз фруктозо-6-фосфата (обход гексокиназной реакции)

Фермент — фосфатаза глюкозо-6-фосфата – фосфогексоизомераза.

Глюкозо-6-фосфат+Н2О Глюкозо-6-фосфатаза Глюкоза + Н3РО4

Свободная глюкоза, образующаяся в ходе этой реакции, поступает из печени в кровь и утилизируется тканями.

Энергетический баланс глюконеогенеза из пирувата: расходуется 6 моль АТФ на синтез 1 моль глюкозы и 2 моль пирувата.

Важное значение имеет глюконеогенез из глицерина и аминокислот.

При голодании, когда усиленно потребляются в качестве источников энергии жирные кислоты, в большом количестве образуется глицерин, который, активируясь с помощью АТФ под воздействием глицерокиназы превращается в α-глицерофосфат, затем окисляющийся под действием глицерофосфатдегидрогеназы в фосфодиоксиацетон – субстрат гликолиза.

Далее фосфодиоксиацетон используется в синтезе глюкозы т.е. в глюконеогенезе.

Лактат , образовавшийся при аэробном гликолизе превращается в печени в пируват, а лактат, образовавшийся в интенсивно работающих мышцах поступает в кровь, а затем в печень и превращается под действием ЛДГ в пируват, который включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами – эту последовательность называют циклом Кори или глюкозо-лактатным циклом.

На каждую молекулу лактата при глюконеогенезе расходуется три молекулы АТФ (точнее, две АТФ и одна ГТФ); поскольку для образования глюкозы необходимо 2 молекулы лактата, суммарный процесс глюконеогенеза из лактата описывается так:

2 лактат + 6 АТФ + 6 Н2О → глюкоза + 6 АДФ + 6 Н3РО4.

Образовавшаяся глюкоза может вновь поступать в мышцы и там превращаться в молочную кислоту.

Глюкоза + 2 АДФ + 2 Н3РО4 → 2 лактат + 2 АТФ + 2 Н2О.

Следовательно, в результате действия цикла Кори (глюкозо – лактатного цикла) работающие мышцы добывают 2 АТФ за счет расходования 6 АТФ в печени.

Дата добавления: 2014-01-04 ; Просмотров: 1510 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Глюконеогенез – это метаболический путь синтеза глюкозы из неуглеводных компонентов (ПВК, молочная кислота, глицерол, ряд аминокислот; такие аминокислоты называют гликогенными). Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов ЦТК.

У позвоночных наиболее интенсивно глюконеогенез протекает в митохондриях клеток печени и почек (в корковом веществе).

Большинство стадий глюконеогенеза представляет собой обращение реакций гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процессе глюконеогенеза на этих 3 этапах используются другие ферменты с получением обходных путей.

1. Обходной путь пируваткиназной реакции

Превращение пирувата в фосфоенолпируват

Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется с образованием оксалоацетата:

Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):

2. Обходной путь фосфофруктокиназной реакции

Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:

3. Обходной путь гексокиназной реакции

Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат.

источник

31 Биосинтез глюкозы (глюконеогенез) из аминокислот, глицерина и мо­лочной кислоты. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори).

Глюконеогенез — процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки. На долю мозга при голодании приходится большая часть потребности организма в глюкозе. Это объясняется тем, что клетки мозга не способны, в отличие от других тканей, обеспечивать потребности в энергии за счёт окисления жирных кислот .Кроме мозга, в глюкозе нуждаются ткани и клетки, в которых аэробный путь распада невозможен или ограничен, например эритроциты (они лишены митохондрий), клетки сетчатки, мозгового слоя надпочечников и др. Первичные субстраты глюконеогенеза — лактат, аминокислоты и глицерол. Включение этих субстратов в глюконеогенез зависит от физиологического состояния организма.

Лактат — продукт анаэробного гликолиза. Он образуется при любых состояниях организма в эритроцитах и работающих мышцах. Таким образом, лактат используется в глюконеогенезе постоянно.

Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке.

Аминокислоты образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.

Большинство реакций глюконеогенеза протекает за счёт обратимых реакций гликолиза и катализируется теми же ферментами. Однако 3 реакции гликолиза термодинамически необратимы. На этих стадиях реакции глюконеогенеза протекают другими путями. Необходимо отметить, что гликолиз протекает в цитозоле, а часть реакций глюконеогенеза происходит в митохондриях.

Образование фосфоенолпирувата из пирувата . Образование фосфоенолпирувата из пирувата происходит в ходе двух реакций первая из которых протекает в митохондриях. Пируват, образующийся из лактата или из некоторых аминокислот, транспортируется в матрикс митохондрий и там карбоксилируется с образованием оксалоацетата.

Пируват-карбоксилаза, катализирующая данную реакцию, — митохондриальный фермент, коферментом которого является биотин. Реакция протекает с использованием АТФ.

Дальнейшие превращения оксалоацетата протекают в цитозоле. Следовательно, на этом этапе должна существовать система транспорта оксалоацетата через митохондриальную мембрану, которая для него непроницаема. Оксалоацетат в митохондриальном матриксе восстанавливается с образованием малата при участии NADH (обратная реакция цитратного цикла).

Образовавшийся малат затем проходит через митохондриальную мембрану с помощью специальных переносчиков. Кроме того, оксалоацетат способен транспортироваться из митохондрий в цитозоль в виде аспартата в ходе малат-аспартатного челночного механизма. В цитозоле малат вновь превращается в оксалоацетат в ходе реакции окисления с участием кофермента NAD + . Обе реакции: восстановление оксалоацетата и окисление малага катализируют малатдегидрогеназа, но в первом случае это митохондриальный фермент, а во втором — цитозольный. Образованный в цитозоле из ма-лата оксалоацетат затем превращается в фосфоенолпируват в ходе реакции, катализируемой фосфоенолпируваткарбоксикиназой — ГТФ-зависимым ферментом.

Образование глюкозы из лактата. Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD + ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют «глюкозо-лактатным циклом», или «циклом Кори«.

Цикл Кори выполняет 2 важнейшие функции: 1 — обеспечивает утилизацию лактата; 2 — предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО2 и Н2О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза.

Образование глюкозы из аминокислот. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цитратного цикла, могут рассматриваться как потенциальные предшественники глюкозы и гликогена и носят название гликогенных. Например, окса-лоацетат, образующийся из аспарагиновой кислоты, является промежуточным продуктом как цитратногр цикла, так и глюконеогенеза. Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в глюкозонеогенез. Следовательно, существует следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах → пируват в мышцах → аланин в мышцах → аланин в печени → глюкоза в печени → глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

Образование глюкозы из глицерола. Глицерол образуется при гидролизе триацил-глицеролов, главным образом в жировой ткани. Использовать его могут только те ткани, в которых имеется фермент глицерол киназа, например печень, почки. Этот АТФ-зависимый фермент катализирует превращение глицерола в α-глицерофосфат (глицерол-3-фосфат). При включении глицерол-3-фосфата в глюконеогенез происходит его дегидрирование NAD-зависимой дегидрогеназой с образованием дигидроксиацетонфосфата, который далее превращается в глюкозу.

35.35 Представление о пентозофосфатном пути превращений глюкозы. Окислительные реакции (до стадии рибулозо-5-фосфата). Распростра­нение и суммарные результаты этого пути (образование пентоз, НАДФН и энергетика)

Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) — окислительной и неокислительной.

В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу — рибулозо-5-фосфат, и образуется восстановленный NADPH. В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат и метаболиты гликолиза. Пентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным коферментом NADPH, который используется в восстановительных процессах. Суммарное уравнение пентозофосфатного пути выражается следующим образом:

3 Глюкозо-6-фосфат + 6 NADP + → 3 СО2 + 6 (NADPH + Н + ) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.

Ферменты пентозофосфатного пути, так же, как и ферменты гликолиза, локализованы в цитозоле. Наиболее активно пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках.

В окислительной части пентозофосфатного путиглюкозо-6-фосфат подвергается окислительному декарбоксилированию, в результате которого образуются пентозы. Этот этап включает 2 реакции дегидрирования.

Первая реакция дегидрирования — превращение глюкозо-6-фосфата в глюконолактон-6-фосфат — катализируется NАDР + -зависимой глюкозо-6-фосфатдегидрогеназой и сопровождается окислением альдегидной группы у первого атома углерода и образованием одной молекулы восстановленного кофермента NADPH. Далее глюконолактон-6-фосфат быстро превращается в 6-фосфоглюконат при участии фермента глюконолактонгидратазы. Фермент 6-фосфоглюконатдегидрогеназа катализирует вторую реакцию дегидрирования окислительной части, в ходе которой происходит также и декарбоксилирование. При этом углеродная цепь укорачивается на один атом углерода, образуется рибулозо-5-фосфат и вторая молекула гидрированного NADPH. Восстановленный NADPH ингибирует первый фермент окислительного этапа пентозофосфатного пути — глюкозо-6-фосфатдегидрогеназу. Превращение NADPH в окисленное состояние NADP + приводит к ослаблению ингибирования фермента. При этом скорость соответствующей реакции возрастает, и образуется большее количество NADPH.

Суммарное уравнение окислительного этапа пентозофосфатногопути можно представить в виде:

Реакции окислительного этапа служат основным источником NADPH в клетках. Гидрированные коферменты снабжают водородом биосинтетические процессы, окислительно-восстановительные реакции, включающие защиту клеток от активных форм кислорода.

Окислительный этап образования пентоз и неокислительный этап (путь возвращения пентоз в гексозы) составляют вместе циклический процесс. Такой процесс можно описать общим уравнением:

Это означает, что из 6 молекул глюкозы образуются 6 молекул рибулозо-5-фосфат (пентозы) и 6 молекул СО2. Ферменты неокислительнойфазы превращают 6 молекул рибулозо-5-фосфат в 5 молекул глюкозы (гексозы). При последовательном проведении этих реакций единственным полезным продуктом является NADPH, образующийся в окислительной фазе пентозофосфатного пути. Такой процесс называют пентозофосфатным циклом. Протекание пентозофосфатного цикла позволяет клеткам продуцировать NADPH, необходимый для синтеза жиров, не накапливая пентозы.

Энергия, выделяющаяся при распаде глюкозы, трансформируется в энергию высокоэнергетического донора водорода — NADPH. Гидрированный NADPH служит источником водорода для восстановительных синтезов, а энергия NADPH преобразуется и сохраняется во вновь синтезированных веществах, например жирных кислотах, высвобождается при их катаболизме и используется клетками.

источник