Меню Рубрики

В каких видах обмена принимает участие печень

Печень играет огромную роль в пищеварении и обмене веществ. Все вещества, всасывающиеся в кровь, обязательно поступают в печень и подвергаются метаболическим превращениям. В печени синтезируется различные органические вещества: белки, гликоген, жиры, фосфатиды и другие соединения. Кровь поступает в нее по печеночной артерии и воротной вене. Причем 80 % крови, идущей от органов брюшной полости, поступает по воротной вене и только 20 % — по печеночной артерии. Кровь оттекает от печени по печеночной вене.

Для изучения функций печени применяют ангиостамический метод, фистулу Экка–Павлова, при помощи которых исследуют биохимический состав притекающей и оттекающей, применяют метод катетеризации сосудов воротной системы, разработанный А. А. Алиевым.

Печени принадлежит существенная роль в обмене белков. Из
аминокислот, поступающих с кровью, в печени образуется белок. В ней
формируются фибриноген, протромбин, выполняющие важные функции
в свертывании крови. Здесь же происходят процессы перестройки
аминокислот: дезаминирование, трансаминирование, декарбоксилирование.

Печень — центральное место обезвреживания ядовитых продуктов азотистого обмена, в первую очереди аммиака, который превращается в мочевину или идет на образование амидов кислот, в печени происходит распад нуклеиновых кислот, окисление пуриновых оснований и образование конечного продукта их обмена — мочевой кислоты. Вещества (индол, скатол, крезол, фенол), поступающие из толстого отдела кишечника, соединяясь с серной и глюкуроновой кислотами, превращаются в эфирно-серные кислоты. Удаление печени из организма животных приводит к их гибели. Она наступает, по-видимому, из-за накопления в крови аммиака и других ядовитых промежуточных продуктов азотистого обмена.

Большую роль печень играет в обмене углеводов. Глюкоза, приносимая из кишечника по воротной вене, в печени превращается в гликоген. Благодаря высоким запасам гликогена печень служит основным углеводным депо организма. Гликогенная функция печени обеспечивается действием ряда ферментов и регулируется центральной нервной системой и 1 гормонами — адреналином, инсулином, глюкагоном. В случае повышенной потребности организма в сахаре, например, во время усиленной мышечной работы или при голодании гликоген под действием фермента фосфорилазы превращается в глюкозу и поступает в кровь. Таким образом, печень регулирует постоянство глюкозы в крови и нормальное обеспечение ею органов и тканей.

В печени происходит важнейшее превращение жирных кислот, из которых синтезируются жиры, свойственные для данного вида животного. Под действием фермента липазы жиры расщепляются на жирные кислоты и глицерин. Дальнейшая судьба глицерина похожа на судьбу глюкозы. Его превращение начинается с участием АТФ и заканчивается распадом до молочной кислоты с последующим окислением до углекислого газа и воды. Иногда при необходимости печень может синтезировать гликоген из молочной кислоты.

В печени также осуществляется синтез жиров и фосфатидов, которые поступают в кровь, транспортируются по всему организму. Значительную роль она играет в синтезе холестерина и его эфиров. При окислении холестерина в печени образуются желчные кислоты, которые выделяются с желчью и участвуют в процессах пищеварения.

Печень принимает участие в обмене жирорастворимых витаминов, является главным депо ретинола и его провитамина — каротина. Она способна синтезировать цианокобаламин.

Печень может задерживать в себе излишнюю воду и тем самым не допускать разжижения крови: она содержит запас минеральных солей и витаминов, участвует в пигментном обмене.

Печень выполняет барьерную функцию. Если в нее с кровью заносятся какие-либо болезнетворные микробы, то они подвергаются обеззараживанию ею. Эту функцию выполняют звездчатые клетки, расположенные в стенках кровеносных капилляров, принизывающих печеночные дольки. Захватывая ядовитые соединения, звездчатые клетки в союзе с печеночными клетками обеззараживают их. По мере необходимости звездчатые клетки выходят из стенок капилляров и, свободно передвигаясь, выполняют свою функцию.

Кроме того, печень способна переводить свинец, ртуть, мышьяк и другие ядовитые вещества — в неядовитые.

Печень является основным углеводным депо организма и регулирует постоянство глюкозы в крови. Она содержит запасы минеральных веществ и витаминов. Является депо крови, в ней образуется желчь, необходимая для пищеварения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9070 — | 7213 — или читать все.

95.83.2.240 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

1. Пищеварительная – печень является крупнейшей пищеварительной железой. Она образует желчь, включающую воду (82%), желчные кислоты (12%), фосфатидилхолин (4%),холестерол (0,7%), прямой билирубин, белки, продукты распада стероидных гормонов, электролиты и другие соединения крови, лекарственные средства и их метаболиты.

Желчь обеспечивает эмульгирование и переваривание жиров пищи, стимулирует перистальтику кишечника. Из крови воротной вены желчные кислоты поглощаются симпортом с ионами Na+. В желчный капилляр синтезированные de novo и используемые вторично желчные кислоты секретируются АТФ-зависимым транспортом.

2. Экскреторная функция, близка к пищеварительной – с помощью желчи выводятся билирубин, немного креатинина и мочевины, ксенобиотики и продукты их обезвреживания, холестерол. Последний выводится из организма только в составе желчи.

3. Секреторная – печень осуществляет биосинтез и секрецию в кровь альбумина и некоторых белков других фракций, белков свертывающей системы, липопротеинов, глюкозы, кетоновых тел, 25-оксикальциферола, креатина.

4. Депонирующая – здесь находится место депонирования энергетических резервов гликогена, накапливаются минеральные вещества, особенно железо, витамины A, D, K, B12и фолиевая кислота.

6. Обезвреживающая функция.

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов. Местами «соединения» обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из ЦТК, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно: образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола, глицеральдегидфосфат, также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат, глицерол-3-фосфат, образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути, «глюкозный» и «аминокислотный» ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Углеводный обмен — В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина. Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу. Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен — Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП. При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

Белковый обмен — Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на «экспорт» – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в составмочевины.

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Пигментный обмен — Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь. Пигментный обмен, в свою очередь, играет важную роль в обмене железа в организме – в гепатоцитах находится железосодержащий белок ферритин.

В клинической практике существуют приемы оценки той или иной функции: Участие в углеводном обмене оценивается: по концентрации глюкозы крови, по крутизне кривой теста толерантности к глюкозе, по «сахарной» кривой после нагрузки галактозой, по величине гипергликемии после введения гормонов (например, адреналина).

Роль в липидном обмене рассматривается: по уровню в крови триацилглицеролов, холестерола, ЛПОНП, ЛПНП, ЛПВП, по коэффициенту атерогенности.

Белковый обмен оценивается: по концентрации общего белка и его фракций в сыворотке крови, по показателям коагулограммы, по уровню мочевины в крови и моче, по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается: по концентрации общего и прямого билирубина в сыворотке крови.

Обезвреживающая роль печени. Реакции микросомального окисления и реакции коньюгации токсических веществ в печени. Примеры обезвреживания (фенол, индол).

Обезвреживание (детоксикация, биотрансформация) естественных метаболитов и чужеродных соединений (ксенобиотиков) непрерывно протекает в любом организме. Для попадания токсичных и чужеродных веществ существует три пути: желудочно-кишечный тракт, легкие и кожа. Далее эти вещества либо могут подвергнуться каким-либо превращениям (биотрансформации) в легких и ЖКТ, либо перейти в кровь. С током крови любые соединения попадают в печень и другие органы. Если это водорастворимое вещество, то оно в состоянии профильтроваться в почках, если летучее – оказаться в выдыхаемом воздухе и покинуть организм, если жирорастворимое – оно либо фиксируется в тканях (кожа, нервная система, жировая ткань и т.п.), либо подвергается биотрансформации в печени. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу.

Кожа также является органом выделения, однако обычно эта функция проявляется слабо. Однако при нарушении выделительной функции почек и печени нагрузка на кожу возрастает.

Ксенобиотики – вещества, которые не используются как источник энергии, не встраиваются в структуры организма и не используются для пластических целей. Например, биотрансформации в печени подвергаются следующие вещества: стероидные и тиреоидные гормоны, инсулин, адреналин, продукты распада гемопротеинов (билирубин), продукты жизнедеятельности микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов, ксенобиотики (токсины, лекарственные вещества и их метаболиты).

Читайте также:  Неумывакин очистка печени шиповником и сорбитом

В целом все реакции биотрансформации делят на две группы или фазы: реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Если эти метаболиты достаточно полярны, они могут легко экскретироваться. Реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.

Оба типа реакций совершенно самостоятельны и могут идти независимо друг от друга и в любом порядке. Для некоторых веществ после реакций 1 и 2I фазы вновь могут наступить реакции фазы 1. Примером сочетанного превращения веществ может служить обезвреживание продукта метаболизма триптофана индола в животный индикан. Сначала индол окисляется с участием цитохрома Р450 до индоксила, затем конъюгирует с серной кислотой с образованием индоксилсульфата и далее калиевой соли – животного индикана.

При повышенном поступлении индола из толстого кишечника образование индикана в печени усиливается, далее он поступает в почки и выводится с мочой. По концентрации животного индикана в моче можно судить об интенсивности процессов гниения белка в кишечнике.

Реакции микросомального окисления осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума (в случае in vitro они называются микросомальные мембраны). Ферменты организуют короткую цепь, которая заканчивается цитохромом P450. Цитохром Р450 взаимодействует с молекулярным кислородом и включает один атом кислорода в молекулу субстрата, способоствуя появлению у нее гидрофильности, а другой – в молекулу воды.

Реакции микросомального окисления относятся к реакциям фазы 1 и предназначены для придания гидрофобной молекуле полярных свойств и/или для повышения ее гидрофильности, усиления реакционной способности молекул для участия в реакциях 2 фазы. В реакциях окисления происходит образование или высвобождение гидроксильных, карбоксильных, тиоловых и аминогрупп, которые и являются гидрофильными.

Ферменты микросомального окисления располагаются в гладком эндоплазматическом ретикулуме и являются оксидазами со смешанной функцией (монооксигеназами).

Основным белком этого процесса является гемопротеин – цитохром Р450. В природе существует до 150 изоформ этого белка, окисляющих около 3000 различных субстратов. У млекопитающих идентифицировано 13 подсемейств цитохрома Р450. Считается, что ферменты одних семейств участвуют в биотрансформации ксенобиотиков, других – метаболизируют эндогенные соединения (стероидные гормоны, простагландины, жирные кислоты и др.).

Работа цитохрома Р450 обеспечивается двумя ферментами: НАДН‑цитохром b5‑оксидоредуктаза, содержит ФАД, НАДФН‑цитохром Р450‑оксидоредуктаза, содержит ФМН и ФАД.

Обе оксидоредуктазы получают электроны от соответствующих восстановленных эквивалентов и передают их на цитохром Р450. Этот белок, предварительно присоединив молекулу восстановленного субстрата, связывается с молекулой кислорода. Получив еще один электрон, цитохром P450 осуществляет включение в состав гидрофобного субстрата первого атома кислорода (окисление субстрата). Одновременно происходит восстановление второго атома кислорода до воды.

Существенной особенностью микросомального окисления является способность к индукции, т.е. увеличению мощности процесса. Индукторами являются вещества, активирующие синтез цитохрома Р450 и транскрипцию соответствующих мРНК. Классическим индуктором считаются производные барбитуровой кислоты – барбитураты. Поскольку существует много изоформ цитохрома, то имеется избирательность среди индукторов.

Ингибиторы микросомального окисления связываются с белковой частью цитохрома или с железом гема – например, спиронолактон, эритромицин.

98. Биосинтез и распад гемоглобина в тканях. Механизм образования основных гематогенных пигментов.

За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов. Эритроциты живут 90-120 дней, после чего лизируются в кровеносном русле или в селезенке. При разрушении эритроцитов в кровяном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и переносится в клетки ретикуло-эндотелиальной системы (РЭС) селезенки (главным образом), печени и костного мозга.

Синтез билирубина — В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина.

Билирубин – токсичное, жирорастворимое вещество, способное нарушать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Выведение билирубина — Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямойбилирубин. Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (лигандина). В клетке протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию могут вступать сульфаты, фосфаты, глюкозиды. Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазыпревращаются в свободный билирубин.

Одновременно некоторое количество билирубин-глюкуронидов может попадать (особенно у взрослых) из желчи в кровь по межклеточным щелям.

Таким образом, в крови в норме одновременно существуют две формы билирубина: свободный, попадающий сюда из клеток РЭС (около 80% всего количества), и связанный, попадающий из желчных протоков (до 20%).

В кишечнике билирубин подвергается восстановлению под действием микрофлоры домезобилирубина и мезобилиногена (уробилиногена). Часть последних всасывается и с током крови вновь попадает в печень, где окисляется до ди- и трипирролов. При этом в здоровом организме в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами. Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается достеркобилиногена и выделяется из организма, окрашивая кал. Незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и выделяется с мочой. На воздухе стеркобилиноген и уробилиноген превращаются, соответственно, в стеркобилин и уробилин.

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

источник

Печень участвует практически во всех видах обмена: белковом, липидном, углеводном, пигментном, водно-минеральном.

1. Участие в белковом обменехарактеризуется тем, что в печени протекает синтез и распад белков. В печени синтезируется за сутки ≈ 13 -18 г белков. Из нихальбумины, фибриноген, протромбин образуются только в печени. Кроме того, здесь синтезируется до 90% a-глобулинов и ≈50% g-глобулинов. В связи с этим при заболеваниях печени вней либо снижается синтез белков, либо образуются белки, с измененными физико-химическими свойствами, в результате чего снижается коллоидная устоичивость, белков (тимоловая проба, Вельтмана).

Печень является, как уже говорилось, основным местом синтеза белков, участвующих в процессе свертывания крови (фибриногена, протромбина и др.). Нарушение их синтеза, как и недостаточность витамина К, (К — витаминзависимые факторы свертывания крови), развивающаяся вследствие нарушения желчеотделения, приводит к геморрагическим явлениям. Активно протекающие в печени процессы превращения

аминокислот (переаминирование, дезаминирование и др.) при ее тяжелых поражениях существенно изменяются, что характеризуется увеличением концентрации свободных аминокислот в крови и выделением их с мочой (гипераминоацидурия). В моче также могут быть обнаружены кристаллы лейцина и тирозина.

Образование мочевины происходит только в печени, и нарушение функции гепатоцитов приводит кувеличению ее количества в крови, что оказывает отрицательное влияние на весь организм и может проявиться, например, печеночной комой, нередко заканчивающейся гибелью больного.

Печень выполняет важнейшую для организма антитоксическую функцию. Именно вней происходит обезвреживание таких вредных веществ, как индола, скатола, фенола, кадаверина, путресцина, билирубина, аммиака и др. Пути обезвреживания их различны: NH3 превращается вмочевину; индол, скатол и др. образуют безвредные соединения с активными формами H2SO4 (ФАФС) и глюкуроновой кислоты (УДФКГ); билирубин связывается с глюкуроновой кислотой.

2. Участие печени в углеводном обмена определяется прежде всего ее участием в процессе синтеза и распада гликогена. Это имеет большое значение для регуляции уровня глюкозы в крови. Кроме того, в печени активно протекают процессы взаимопревращения в глюкозу, а глюкоза может стать источником для синтеза фруктозы.

В печени протекает также процесс глюконеогенеза, при котором из неуглеводных веществ – молочной кислоты, глицерина и гликогенных аминокислот – происходит образование глюкозы.

Печень учасвует в регуляции углеводного обмена путем контроля за уровнем инсулина в крови, т.к. в печени содержится фермент инсулиназа, расщепляющая инсулин в зависимости от потребности организма. Энергитическая потребность самой печени обеспечивается за счет распада глюкозы по аэробному и пентозному пути.

3. Участие печени в липидном обмене играет ведущую роль. Непосредственно в гепатоцитах протекает биосинтез холистерина, жирных кислот, синтез фосфолипидов, липопротеидов и кетоновых тел плазмы крови. С другой стороны, печень контролирует обмен липидов всего организма. Хотя ТАГ составляют только 1% от общей массы печени, но именно ею регулируются процессы синтеза и транспорта жирных кислот организма. В печень поступает большое количество липидов, которые «сортируются» в зависимости от потребности органов и тканей. При этом в одних случаях может усиливаться их распад до конечных продуктов, а в других — ЖК могут идти на синтез фосфолипидов и кровью достовляться к тем клеткам, где они необходимы для образования мембран, или же липопротеидами ЖК транспортируются к клеткам, которые испытывают недостаток в энергии и т.д.

Таким образом, обобщая роль печени в обмене липидов, можно отметить, что она использует липиды для нужд гепатоцитов, а также выполняет функцию котроля за состоянием липидного обмена во всем организме.

4. Участие печени в водно-минеральном обмене. В печени может накапливаться до 20% всего объема крови, т.к. она является депо крови, а следовательно, и внеклеточной жидкости. Кроме того, для некоторых минеральных веществ печень служит местом накопления и запасания. К ним относятся Na, Mg, Mn, Cu, Fe и др. В печени происходит синтез белков, транспортирующих минеральные вещества по крови: трансферрина, церулоплазмина и др.

Наконец, печень — это место инактивации гормонов, обеспечивающих регуляцию водно-минерального обмена (альдостерона, вазопрессина).

Из всего сказанного понятно, почему печень называют «биохимической лабораторией» организма.

РАЗДЕЛ XIII

Гемостаз — это комплекс реакций организма (рефлекторных, химических,

физико-химических, биологических), направленных на остановку

Гомеостаз — комплекс реакций, направленных на постоянство

внутренней среды. Гемостаз — часть гомеостаза.

Тремя краеугольными компонентами системы гемостаза являются сосудистая стенка, система коагуляции и система фибринолиза. Каждая из этих систем состоит из множества взаимосвязанных между собой компонентов.

Читайте также:  Рак поджелудочной железы с метастазами в печень отзывы

— факторы сосудистой стенки

— ингибиторы плазменных факторов свертывания.

источник

Вкратце:Печень участвует во многих обменных процессах организма: белковых, жировых, углеводных и других. Вот почему при повреждении печени страдает весь организм, а серьёзные заболевания печени могут даже привести к летальному исходу. Нарушения метаболизма в печени могут быть наследственными и приобретёнными. Чтобы избежать приобретённых нарушений, нужно вести здоровый образ жизни в целом.

  • Печень — центральный орган метаболизма
  • Обмен белков
  • Обмен жиров
  • Обмен углеводов
  • Другие виды обмена
  • Виды нарушений метаболизма в печени
  • Как избежать метаболических заболеваний

Традиционно печень рассматривается как основной орган, выполняющий задачу детоксикации в организме. То есть печень обезвреживает и помогает устранить токсичные для человека вещества.

Однако это лишь часть метаболической функции печени, которая представляет собой непрерывную цепь биохимических реакций. Такая активная деятельность органа нужна, чтобы поддерживать равновесие обменных процессов во всём организме.

Печень — центральный орган обмена веществ.

Печень взрослого человека весит в среднем 1,5 кг (примерно 2,2% от массы тела). Её вес, структура и биохимический состав могут изменяться, в том числе при развитии некоторых заболеваний.

Ввиду «барьерного» расположения между верхними отделами тракта и кровеносной системой печень получает обильное кровоснабжение — около полутора литров крови в минуту:

  1. Три четверти объёма этой крови поступают из портальной системы (воротной вены).
  2. И ещё одна четверть — из печёночной артерии.

Функции печени многообразны. Вот самое главное из того, что она делает для нас:

  • Обеспечивает гомеостаз (поддерживает постоянство внутренней среды) за счёт регулирования в кровеносной системе веществ, поступающих в организм через ЖКТ.
  • Осуществляет биосинтез необходимых веществ (глюкоза, альбумины, липиды ).
  • Обезвреживает продукты метаболизма (аммиак), а также токсические соединения, образующиеся при разложении белков в кишечнике, при переработке медикаментов.
  • Синтезирует желчные кислоты, занимается секрецией и выделением желчи, необходимой для обеспечения процессов пищеварения и выведения ряда веществ через кишечник (холестерин, билирубин, стероиды ).
  • Дезактивирует витамины, гормоны.

Важно! Печень выполняет множество жизненно важных функций. Вот почему серьёзные заболевания печени (например, печёночная недостаточность), когда погибает большая часть её клеток, могут стать смертельно опасными.

В гепатоцитах производится больше половины белка, синтезируемого во всём организме ежесуточно. Здесь образуется:

  • 100% всех альбуминов сыворотки крови;
  • 80% ;
  • 55% .

Указанные белки собираются в рабочих клетках печени (гепатоцитах) из аминокислот, которые доставляются в печень по воротной (портальной) вене.

Если печень больна и её ткань сильно повреждена, то в крови возрастает уровень свободных аминокислот, а содержание альбумина падает. Это признак развития функциональной несостоятельности печени.

Белки, продуцируемые гепатоцитами, играют важную роль:

  • Поддерживают нормальное осмотическое давление плазмы крови.
  • Регулируют процессы свертываемости крови. Только в печени синтезируются факторы свертывающей системы (фибриноген, проакселерин и другие).
  • Обеспечивают связывание и доставку молекул гормонов, витаминов, лекарственных препаратов к тканям и . Эту работу выполняют транскортин, трансферрин и другие транспортные белки.
  • Способствуют адекватному иммунному ответу (синтез ).
  • Осуществляют разные биохимические превращения в самих гепатоцитах (печёночные трансаминазы), в крови (холинэстераза) и в желчи (щелочная фосфатаза).

В гепатоцитах также происходит катаболизм (разрушение) нуклеотидов. Они распадаются до аминокислот, пуриновых (гипоксантин) и пиримидиновых (урацил, цитозин) соединений, которые используются для производства мочевой кислоты и мочевины, креатина и холина. Эти азотсодержащие метаболические продукты помогают печени выполнять обезвреживающую функцию.

Печень участвует в обмене жиров на всех известных этапах. Именно в печени происходит синтез:

  • триглицеридов;
  • фосфолипидов;
  • жирных (одноосновных карбоновых) кислот;
  • липопротеидов низкой и высокой плотности (ЛПНП и ЛПВП);
  • кетоновых (ацетоновых) тел;
  • холестерина.

В печени также происходят следующие процессы, в которых задействованы жиры:

  • окисление фосфолипидов,
  • активация витамина D.

Впоследствии из холестерина образуются жёлчные кислоты, стероидные гормоны, витамины, ЛПНП. Жирные кислоты производятся не только из поступающих в организм жиров, но также из глюкозы и белков (в случае их избытка).

При диабете, голоде, интенсивной мышечной работе, избытке жирной пищи в рационе печень начинает активный синтез кетонов для обеспечения тканей альтернативной энергией.

Важно! Если есть много жирной пищи, но притом очень мало углеводов, то в печени начинают синтезироваться кетоны, а в крови увеличивается количество кетоновых тел. Наш организм использует их как резерв, замещающий глюкозу. На этом фоне может снижаться масса тела, что служит основой «модной» кетогенной диеты. Однако такая диета связана с риском для здоровья человека и не рекомендуется диетологами для снижения веса! Официальное показание к подобному изменению рациона — только эпилепсия в детском возрасте, и то вмешательство производится под строгим контролем врача.

Несмотря на важнейшую роль поджелудочной железы в регуляции обмена глюкозы в организме, печень также участвует в поддержании нормального уровня глюкозы в крови. В случае необходимости в гепатоцитах осуществляются биохимические превращения разных химических веществ в сахар (глюкозу).

Особенно большое значение имеет процесс глюконеогенеза, то есть продукции глюкозы в печени из глицерина, лактата, аминокислот и других веществ. За счёт взаимосвязи углеводного и белкового обменов организм обеспечивается необходимой энергией даже при недостаточном поступлении пищи (голодание, диабет).

При избытке глюкозы в крови она может быть запасена в форме гликогена в печени. Это резервная, лёгкая для мобилизации при необходимости форма углеводов в организме занимает примерно десятую часть от массы печени.

Расходование депо гликогена и вывод глюкозы в кровеносное русло происходит в ночное время и в промежутках между очередными поступлениями пищи. Такой режим поддерживает уровень гликемии в норме. Резерв гликогена обычно исчерпывается на вторые сутки голодания, после чего включается процесс глюконеогенеза.

Важно! Повреждение клеток печени нарушает её способность к образованию гликогена. При этом снижается выделение глюкозы в кровь, что приводит к появлению гипогликемии.

В печени происходит биохимическая трансформация многих поступающих извне веществ, включая лекарства. Они инактивируются либо подвергаются превращениям. В результате образуются менее токсичные водорастворимые соединения, которые выводятся из организма с желчью через кишечник или с мочой.

Кроме того, печень участвует в метаболизме:

  • Витаминов и микроэлементов. Депонирование меди, цинка, железа, марганца, а также жирорастворимых (A, D, E, K) и водорастворимых (PP и группа B) витаминов.
  • Стероидных гормонов, гормонов щитовидной железы, инсулина.
  • Пигментов (билирубин).

Метаболические расстройства в печени выражаются в развитии обменных заболеваний, которые подразделяются на:

Отдельную группу составляют синдромы накопления, при которых в ткани печени и других органов значительно увеличивается содержание разных субстанций.

Обменные заболевания касаются практически всех видов деятельности гепатоцитов и называются:

  • цистинозами, если нарушается белковый метаболизм;
  • гликогенозами, если страдает обмен углеводов;
  • липидозами, если есть неполадки в жировых превращениях.

Самым распространённым метаболическим нарушениям считается жировая болезнь печени. При этом заболевании в клетках печени накапливаются липиды, они там же окисляются — и в результате развивается воспаление, а ткань печени начинает разрушаться. На месте погибших гепатоцитов начинает разрастаться соединительная ткань. Исходом обычно является разрастание соединительных волокон на месте погибших гепатоцитов, формирование цирроза и печёночной недостаточности.

Нарушение обмена пигментов (билирубина) обычно связано с дефектом фермента, превращающего свободный билирубин в связанную форму. Выделяют несколько разных по тяжести и клиническим проявлениям синдромов. Показателем нарушения пигментного обмена является уровень разных фракций билирубина в крови. Клинически это проявляется желтухой разной интенсивности и накоплением пигмента в тканях.

Нарушение обмена металлов (меди, железа) относится к категории наследственных болезней, при которых страдает не только печень, но и другие органы. Примером нарушения обмена металлов является гемохроматоз (избыточное накопление железа в тканях).

Возможность профилактики существует лишь для вторичных обменных нарушений. При обнаружении врождённой патологии необходимо наблюдение и симптоматическое лечение, а в тяжёлых случаях речь идёт о трансплантации печени.

Профилактика приобретённых метаболических заболеваний печени состоит в следующем:

  • рациональное питание (приближенное к средиземноморской диете);
  • поддержание нормального веса;
  • активный образ жизни с регулярными физическими нагрузками;
  • отказ от алкоголя. В отношении употребления алкоголя позиция Всемирной организации здравоохранения такова: не существует минимальной безопасной дозы для употребления, алкоголь вреден в любом количестве (особенно для печени);
  • регулярная вакцинация от вируса гепатита В, а также от вируса гепатита А — для жителей регионов с его высокой распространенностью.

Вы можете задать вопрос врачу-гепатологу в комментариях. Спрашивайте, не стесняйтесь!

Статья обновлялась в последний раз: 17.06.2019

источник

Печень в организме человека выполняет целый ряд разнообразных и жизненно важных функций. Печень участвует практически во всех видах обмена: белко­вом, липидном, углеводном, водно-минеральном, пиг­ментном.

Участие печени в белковом обменехарактеризует­ся тем, что в ней активно протекают синтез и рас­пад белков, имеющих важное значение для организма. В печени синтезируется за сутки около 13-18 г белков. Из них альбумины, фибриноген, протромбин образуются только и печени. Кроме того, здесь синтезируется до 90% альфа-глобулинов и около 50% гамма-глобулинов организма. В связи с этим при заболеваниях печени в ней либо снижается синтез белков и это приводит к уменьшению количества белков крови, либо происходит образование белков с измененными физико-химическими свойствами, в результате чего пони­жается коллоидная устойчивость белков крови и онилегче, чем в норме, выпадают в осадок при действии осадителей (солей щелочных и щелочноземельных металлов, тимола, сулемы и др.). Обнаружить изме­нение количества или свойств белков можно с помо­щью проб на коллоидоустойчивость или осадочных проб, среди которых часто используются пробы Вельтмана, тимоловая и сулемовая.

Печень является основным местом синтеза белков, обеспечивающих процесс свертывания крови (фибри­ногена, протромбина и др.). Нарушение их синтеза, как и недостаточность витамина К, развивающаяся вследствие нарушения желчеотделения и желчевыделения, приводят к геморрагическим явлениям.

Активно протекающие в печени процессы превра­щений аминокислот (переаминирование, дезаминирование и др.) при ее тяжелых поражениях существенно изменяются, что характеризуется увеличением кон­центрации свободных аминокислот в крови и выделе­нием их с мочой (гипераминоацидурии). В моче также могут быть обнаружены кристаллы лейцина и тиро­зина.

Образование мочевины происходит только в печени и нарушение функций гепатоцитов приводит к увели­чению ее количества в крови, что оказывает отрица­тельное влияние на весь организм и может проявить­ся, например, печеночной комой, нередко заканчи­вающейся гибелью больного.

Обменные процессы, протекающие в печени, ката­лизируются различными ферментами, которые при ее заболеваниях выходят в кровь и поступают в мочу. Важно, что выход ферментов из клеток происходит не только при их повреждении, но и при нарушении проницаемости клеточных мембран, имеющем место в самом начальном периоде заболевания, поэтому изменение ферментных спектров является одним из важнейших диагностических показателей оценки со­стояния больного еще в доклинический период. На­пример, при болезни Боткина уже в дожелтушный период отмечено увеличение в крови активности АлТА, ЛДГ и АсТА, а при рахите — увеличение уров­ня щелочной фосфатазы.

Читайте также:  Чему способствует очищение печени и почек

Печень выполняет важнейшую для организма ан­титоксическую функцию. Именно в ней происходит обезвреживание таких вредных веществ, как индол, скатол, фенол, кадаверин, билирубин, аммиак, продук­ты обмена стероидных гормонов и др. Пути обезвре­живания токсических веществ различны: аммиак пре­вращается в мочевину; индол, фенол, билирубин и дру­гие образуют безвредные для организма соединения с серной или глюкуроновой кислотами, которые выво­дятся с мочой.

Роль печени в углеводном обменеопределяется прежде всего ее участием в процессах синтеза и рас­пада гликогена. Это имеет большое значение для регу­ляции уровня глюкозы в крови. Кроме того, в печени активно протекают процессы взаимопревращения мо­носахаридов. Галактоза и фруктоза превращается в глюкозу, а глюкоза может стать источником для син­теза фруктозы.

В печени протекает также процесс глюконеогенеза, при котором из неуглеводных веществ — молочной кислоты, глицерина и гликогенных аминокислот — происходит образование глюкозы. Печень участвует и в регуляции углеводного обмена путем контроля за уровнем инсулина в крови, так как в печени содержится фермент инсулиназа, расщепляющая инсулин в зависимости от потребности организма.

Энергетические потребности самой печени обес­печиваются за счет распада глюкозы, во-первых, по анаэробному пути с образованием лактата и, во-вто­рых, по пептозному пути. Значение указанных процес­сов заключается не только и образовании НАДФН2 для различных биосинтезов, но и возможности ис­пользовать продукты распада углеводов в качестве исходных веществ для различных обменных процессов.

В обмене липидов паренхиматозные клетки печени играют ведущую роль. Непосредственно в гепатоцитах протекают процессы биосинтеза холестерина, желчных кислот, образование фосфолипидов плазмы, кетоно­вых тел и липопротеидов. С другой стороны, печень контролирует обмен липидов всего организма. Хотя триацилглицерины составляют только 1% от общей массы печени, но именно ею регулируются процессы синтеза и транспорта жирных кислот организма. В пе­чень, поступает большое количество липидов, которые «сортируются» в зависимости от потребностей органов и тканей. При этом в одних случаях может усили­ваться их распад, до конечных продуктов, а в дру­гих желчные кислоты могут идти на синтез фосфо­липидов и кровью доставляться к тем клеткам, где они необходимы для образования мембран, или же липопротеидами транспортироваться к клеткам, кото­рые испытывают недостаток в энергии, и т. д.

Немаловажное значение имеет печень и в водно-минеральном обмене. Так, она является депо крови, а, следовательно, и внеклеточной жидкости, в ней мо­жет накапливаться до 20% всего объема крови. Кроме того, для некоторых минеральных веществ печень слу­жит местом накопления и запасания. К ним относятся натрий, магний, марганец, медь, железо и др. В печени идет синтез белков, транспортирующих минеральные вещества по крови: трансферрина, церулоплазмина и др. Наконец, печень — это место инактивации гор­монов, обеспечивающих регуляцию водно-минераль­ного обмена (альдостерона, вазопрессина).Гепатит – это воспаление печени. По происхождению гепатиты подразделяются на вирусные (гепатит А, В, С, гепатит при желтой лихорадке, при СПИДе) и невирусные.Гепатоз– острое или хроническое заболевание печени невоспалительного характера. В основе его лежат патологические изменения функциональных клеток печени – гепатоцитов.

5)безазотистые составные части плазмы крови,,представители,химическая природа нормальное содержание безазотистых составных частей ,причины отклонения от нормы

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

Для оформления договора на оказание ветеринарных услуг необходим ваш паспорт!

К нашим специалистам теперь можно записаться на прием! Нажмите, чтобы узнать подробности.

Если ваш питомец нуждается в квалифицированной медицинской помощи, и у вас нет возможности доставить его в клинику, заказывайте выезд ветеринарного врача на дом. Работаем и выезжаем на вызов круглосуточно.

Анжелика Витальевна Горбатова — профессиональный грумер. Мастер найдет подход даже к самому капризному домашнему любимцу!

Наш Ветеринарный центр занимается диагностикой и лечением экзотических животных! В центре принимает Елена Владимировна Осипенко — один из лучших специалистов в городе по экзотическим животным!

Вы можете задать вопрос ветеринарному врачу или администратору клиники.

ОБМЕН УГЛЕВОДОВ

Печень является центром обмена углеводов в организме, ее роль заключается в поддержании нормогликемии, то есть физиологической концентрации глюкозы к крови. Углеводы аккумулируются в печени в виде гликогена, и, при необходимости, в ходе гликогенолиза гидролизуется в глюкозу. Если доступного гликогена недостаточно, глюкоза синтезируется из аминокислот (глюконеогенез). Кроме того, глюкоза образуется из глицерола и промежуточных соединений, образующихся во время гликолиза, таких как молочная и пировиноградная кислоты. Если рацион неполноценен по содержанию углеводов, концентрация глюкозы поддерживается за счет расхода белков организма. Жировые запасы также расходуются во время голодания, однако синтез глюкозы не возможен из жирных кислот. Не смотря на то, что жиры не участвуют в поддержании оптимального уровня глюкозы, они выступают альтернативным источником энергии для организма.

Гликоген — гликогенолиз — глюкоза — нормогликемия
Аминокислоты — глюконеогенез — глюкоза — нормогликемия

Клиническая значимость: Острые или хронические заболевания печени могут сопровождаться гипогликемией

ОБМЕН БЕЛКОВ

Печень — ключевое место белкового метаболизма. Аминокислоты и белки, абсорбированные из кишечника или синтезируемые в организме, доставляются в печень. Здесь аминокислоты дезаминируются и в зависимости от потребностей могут быть преобразованы в углеводы или жиры. Дезаминирование осуществляется альфа-кетокислотой, которая может метаболизироваться для энергетических нужд или используется для синтеза моносахаридов и жирных кислот. Печень способна синтезировать аминокислоты из продуктов углеводного и жирового обмена путем аминирования и трансаминирования. Примеры аминоксилотного трансаминирования:

Аланин + альфакетоглютарат = пируват + глутамат
Аспартат + альфакетоглютарат = оксалоацетат + глутамат

Печень синтезирует множество белков, включая альбумин и фибриноген, большинство из альфаглобулинов, некоторые беттаглобулины, церулоплазмин, ферритин и другие.
Обмен мочевины включает окислительное расщепление аминокислот. Аммоний — простейший метаболит аминокислотного обмена. Желудочно-кишечный тракт, а в основном толстый кишечник — основной источник поступления в организм аминов, поскольку именно там происходит расщепление эндогенной мочевины под действием бактериальной уреазы до простых азотсодержащих соединений, прежде всего аммония. Последний поступает в портальную вену и транспортируется в печень и подвергается трансформированию:

2NH3 + CO2 + 3ATP +H2O = мочевина + 2 ADP = 4Pi + AMP + 2H

Клиническое значение: Острые и хронические заболевания печени могут быть ассоциированы с
повышением активности аминотрансфераз, гипоальбуминемией, гипераммониемией и снижением азота мочевины в крови.

ЖИРОВОЙ ОБМЕН

Печень в качестве посредника принимает участие в метаболизме липидов:
1) синтез триглицеридов,
2) окисление жирных кислот и
3) синтез холестерина, его аккумулирование, выделение и транспортировка.

Клиническая значимость: Острые и хронические заболевания печени могут сопровождаться гипохолестеролемией. Полная или частичная обструкция желчевыводящих путей может сопровождаться стеатореей.

ФАКТОРЫ СВЕРТЫВАНИЯ

Печень синтезирует плазматические факторы свертывания крови I (фибриноген), II (протромбин), V, VII, VIII, IX, X. Факторы II, VII, IX и Х являются витамин К-зависимыми. При заболеваниях печени наиболее важными являются факторы с самым коротким периодом полураспада – факторы VII и VIII.

Клиническая значимость: острые и хронические заболевания печени могут сопровождаться 1) увеличением протромбинового и частичного тромбопластинового времени; 2) коагулопатиями.

ЖЕЛЧЕОТДЕЛЕНИЕ

Желчь – слабощелочная изотоничная смесь солей желчных кислот, желчных пигментов, фосфолипидов, холестерина, электролитов и воды. Желчные кислоты и соли желчных кислот являются основным компонентом желчи. Желчные кислоты синтезируются из холестерина и, соединяясь с аминокислотой (как правило, таурин и глицин), превращаются в соли. Они выделяются в желчные пути и в желчный пузырь, где хранятся какое-то время. Далее с током желчи они попадают в тонкую кишку (во время кормления). Желчные соли осуществляют эмульгирование жиров корма, значительно облегчая работу панкреатической липазы. Реабсорбция солей желчных кислот в подвздошной кишке способствует возвращению желчных кислот в печень для повторного поглощения, синтеза и секреции в желудочно-кишечный тракт.

Клиническая значимость: Обструкция желчевыводящих путей может сопровождаться желтухой и стеатореей.

МЕТАБОЛИЗМ ПОРФИРИНА

Порфирины – промежуточный продукт биосинтеза гема. В норме порфирины превращаются в часть гемоглобина, способную транспортировать кислород, а также в миоглобин, цитохромы, каталазу и пероксидазу. Для порфиринов печень выполняет синтетическую и выделительную функции.

Клиническая значимость: Острые и хронические заболевания печени могут сопровождаться 1) накоплением порфиринов и синдромом порфирии (порфириновая болезнь), но чаще 2) увеличением концентрации билирубина и желтухой.

ОБМЕН МЕТАЛЛОВ

Печень является местом хранения железа, которое в чрезмерных количествах в кровяном русле может быть токсичным (гемохроматоз). Количество железа в организме, в значительной степени определяется его поглощением в верхней части тонкой кишки. Железо хранится в виде ферритина внутри клеток некоторых тканей, среди которых печеночная паренхима обладает наибольшей емкостью хранения. Когда печень не способна больше аккумулировать железо, оно накапливается в виде гемосидерина. Кроме железа печень содержит медь в качестве составной части специфических белков, таких как цитохромоксидаза, митохондриальная моноаминоксидазы и церулоплазмин. Мобилизация меди из гепатоцитов происходит за счет двух механизмов – связывание церулоплазмина и секреция желчи.

Клиническая значимость: холестаз может сопровождаться задержкой железа и меди, что может вызвать повреждение гепатоцитов путем апоптоза и воздействия свободных кислородных радикалов.

ОБМЕН ВИТАМИНОВ

Печень играет важную роль в метаболизме витаминов. Так, желчь способствует поглощению жирорастворимых витаминов (A, D, E, K), а сама печень является хранилищем витаминов. Водорастворимые витамины, кроме витамина В12 (кобаламин), легко всасываются из тонкой кишки. Эти витамины в основном используются в качестве коэнзимных предшественников в процессах обмена веществ. Большое количество всех водорастворимых витаминов, за исключением витамина С, хранится в печени.

Клиническая значимость: холестаз может сопровождаться стеатореей и мальабсорбцией жирорастворимых витаминов.

МЕТАБОЛИЗМ КСЕНОБИОТИКОВ (чужеродных веществ)

Многочисленные чужеродные соединения, включая лекарства, находились бы в организме неопределенное время, если бы не подвергались биотрансформации в печени. Печень является важным органом, от функции которого зависит токсичность лекарственного препарата или токсинов на организм в целом. Ключевая роль печени объясняется тем, что 75-80% печеночного кровотока составляет кровь, оттекающая непосредственно от желудочно-кишечного тракта и селезенки. Эта кровь транспортирует не только питательные вещества, но и бактерии и бактериальные антигены, наркотики и ксенобиотики, которые всасываются из кишечника.

Клиническая значимость: Острые и хронические заболевания печени могут сопровождаться накоплением ксенобиотиков, а также эндогенных гормонов (например, глюкокортикоиды).

ИМУННЫЙ КОНТРОЛЬ

Ретикулоэндотелиальная система печени удаляет микробы, эндотоксины, энтеротоксины и экзотоксины. Печень регулирует Т-клеточный гомеостаз, индуцирует Т-клеточную толерантностьи, а также поддерживает внутрипеченочный Т-клеточный ответ против гепатотропных патогенов.

Клиническая значимость: Острые и хронические заболевания печени могут сопровождаться бактериемией и предрасположенностью к системной инфекции.

источник