Меню Рубрики

В печени заканчиваются все запасы энергии

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой. А от чего зависит энергия человека?

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Энергия человека для его жизнедеятельности зависит от употребляемой им пищи. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

– Углеводы – 4ккал (17кДж) на 1г
– Белки (протеин) – 4ккал (17кДж) на 1г
– Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Энергетическая ценность различных пищевых продуктов сильно отличается. Здоровые люди достигают сбалансированности своей диеты потреблением самой разнообразной пищи. Очевидно, что, чем более активный образ жизни ведет человек, тем больше он нуждается в пище, или тем более энергоемкой она должна быть.

Самым важным источником энергии для человека являются углеводы.

Сбалансированная диета обеспечивает организм разными видами углеводов, но большая часть энергии должна поступать из крахмала. В последние годы немало внимания уделялось изучению связи между компонентами питания людей и различными болезнями. Исследователи сходятся во мнении, что людям необходимо уменьшать потребление жирной пищи в пользу углеводов.

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

Аденозинтрифосфат (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой , которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли.

С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах. Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата.

Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

– слабая интенсивность (бег трусцой)

Требуемый уровень восстановления АТФ из АДФ относительно низок, и достигается окислением жиров, глюкозы и гликогена. Когда запасы гликогена исчерпаны, возрастает роль жиров как источника энергии. Поскольку жирные кислоты окисляются довольно медленно, чтобы восполнять расходуемую энергию, возможность долго продолжать подобную тренировку зависит от количества гликогена в организме.

– средняя интенсивность (быстрый бег)

Когда физическая активность достигает максимального для продолжения процессов аэробного окисления уровня, возникает потребность быстрого восстановления запасов АТФ. Углеводы становятся основным топливом для организма. Однако только окислением углеводов требуемый уровень АТФ поддерживаться не может, поэтому параллельно происходит окисление жиров и образование лактата.

– максимальная интенсивность (спринт)

Синтез АТФ поддерживается, в основном, использованием креатин фосфата и образование лактата, поскольку метаболизм окисления углеводов и жиров не может поддерживаться с такой большой скоростью.

Тип источника энергии зависит от продолжительности тренировки. Сначала происходит выброс энергии за счет использования креатин фосфата. Затем организм переходит на преимущественное использование гликогена, что обеспечивает энергией приблизительно на 50-60% синтез АТФ.

Остальную часть энергии на синтез АТФ организм получает за счет окисления свободных жирных кислот и глюкозы. Когда запасы гликогена истощаются, основным источником энергии становятся жиры, в то же время из углеводов начинает больше использоваться глюкоза.

В тех видах спорта, где периоды относительно низких нагрузок сменяются резкими повышениями активности (футбол, хоккей, баскетбол), происходит чередование использования креатин фосфата (во время пиков нагрузки) и гликогена как основных источников энергии для синтеза АТФ. В течение «спокойной» фазы в организме восстанавливаются запасы креатин фосфата.

Чем тренированнее человек, тем выше способность организма к окислительному метаболизму (меньше гликогена превращается в лактозу) и тем экономичнее расходуются запасы энергии. То есть, тренированный человек выполняет какое-либо упражнение с меньшим расходом энергии, чем нетренированный.

Чем выше уровень гликогена в организме перед началом тренировки, тем позднее настанет утомление. Чтобы повысить запасы гликогена, необходимо увеличить потребление пищи, богатой углеводами. Специалисты в области спортивного питания рекомендуют придерживаться таких диет, в которых до 70% энергетической ценности составляли бы углеводы.

Рекомендуемая спортсменам пища, богатая углеводами:

– рис
– паста (макаронные изделия)
– хлеб
– зерновые злаки
– корнеплоды

Наши рекомендации
Следующие рекомендации помогут Вам оптимизировать диету и улучшить самочувствие:

– введите в свой план питания больше углеводов, чтобы поддерживать энергетические запасы организма;
– за 1-4 часа до тренировки съедайте 75-100 г углеводов;
– непосредственно перед тренировкой выпейте 200-500 мл специализированного спортивного напитка (изотоника) для увеличения запасов жидкости и углеводов;
– если возможно, пейте по 100-150 мл изотоника каждые 15-20 минут во время тренировки, чтобы компенсировать расход жидкости и углеводов;
– в течение первого получаса тренировки, когда способность мышц к восстановлению максимальна, съешьте 50-100 углеводов;
– после тренировки необходимо продолжать потребление углеводов для скорейшего восстановления запасов гликогена.

Не забудьте поставить лайк и поделиться статьей с друзьями.

источник

Что это за зверь такой «гликоген»? Обычно о нем вскользь упоминается в связи с углеводами, однако мало кто решает углубиться в саму суть данного вещества.

Кость Широкая решила рассказать вам все самое важное и нужное о гликогене, чтобы больше не верили в миф о том, что «сжигание жиров начинается только после 20 минуты бега». Заинтриговали?

Итак, из этой статьи вы узнаете: что такое гликоген, строение и биологическую роль, его свойства, а также формулу и структуру строения, где и для чего содержится гликоген, как происходит синтез и распад вещества, как происходит обмен, а также, какие продукты являются источником гликогена.

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: жиров, белков и углеводов.

Жиры дают 9 ккал, а белки и углеводы — 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы — относительно «быстрой». Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы, которая необходима для питания всех клеток организма.

Схема расщепления углеводов

Гликоген — это своеобразный «консервант» углеводов, другими словами, энергетические резервы организма — сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген — это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

Читайте также:  Что означает эхогенность печени повышена что это такое

По сути, молекула гликогена состоит из остатков глюкозы, это запасное вещество на случай нехватки энергии в организме!

Структурная формула строения фрагмента макромолекулы гликогена (C6H10O5) выглядит схематично так:

Вообще, гликоген — это полисахарид, а значит, относится к классу «сложных» углеводов:

В гликоген может пойти только углевод. Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Важно иметь в рационе хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшими источниками гликогена являются: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка.

Осторожно к подобной пище стоит отнестись лицам с дисфункцией печени и недостатком ферментов.

Как же происходит создание и процесс распад гликогена?

Как организм запасает гликоген? Процесс образования гликогена (гликогенез) проходит по 2 сценариям. Первый — это процесс запаса гликогена. После углеводосодержащей еды уровень глюкозы в крови повышается. В ответ инсулин попадает в кровоток, чтобы впоследствии облегчить доставку глюкозы в клетки и помочь синтезу гликогена.

Благодаря ферменту (амилазе) происходит расщепление углеводов (крахмала, фруктозы, мальтозы, сахарозы) на более мелкие молекулы.

Затем под воздействием ферментов тонкого кишечника осуществляется распад глюкозы на моносахариды. Значительная часть моносахаридов (самая простая форма сахара) поступает в печень и мышцы, где гликоген откладывается в «резерв». Всего синтезируется 300-400 гр гликогена.

Т.е. само превращение глюкозы в гликоген (запасной углевод) происходит в печени, т.к. мембраны клеток печени в отличие от мембраны клеток жировой ткани и мышечных волокон свободно проницаемы для глюкозы и в отсутствие инсулина.

Второй механизм под названием мобилизация (или распад) запускается в периоды голода или активной физической деятельности. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Когда организм истощает запас гликогена в клетках, то мозг подает сигналы о необходимости «дозаправки». Схема синтеза и мобилизации гликогена:

Кстати, при распаде гликогена происходит торможение его синтеза, и наоборот: при активном образовании гликогена его мобилизация тормозится. Гормоны, отвечающие за мобилизацию данного вещества, т.е., гормоны, стимулирующие распад гликогена — это адреналин и глюкагон.

Где накапливается гликоген для последующего использования:

Основные запасы гликогена находятся в печени и мышцах. Количество гликогена в печени может достигать у взрослого человека 150 — 200 гр. Клетки печени являются лидерами по накоплению гликогена: они могут на 8 % состоять из этого вещества.

Основная функция гликогена печени — поддержать уровень сахара в крови на постоянном, здоровом уровне.

Печень сама себе является одним из важнейших органов организма (если вообще стоит проводить «хит парад» среди органов, которые нам все необходимы), а хранение и использование гликогена делает ее функции еще ответственнее: качественное функционирование головного мозга возможно только благодаря нормальному уровню сахара в организме.

Если же уровень сахара в крови снижается, то возникает дефицит энергии, из-за которого в организме начинается сбой. Нехватка питания для мозга сказывается на центральной нервной системе, которая истощается. Тут то и происходит расщепление гликогена. Потом глюкоза поступает в кровь, благодаря чему организм получает необходимое количество энергии.

Запомним также, что в печени происходит не только синтез гликогена из глюкозы, но и обратный процесс — гидролиз гликогена до глюкозы. Этот процесс вызывается понижением концентрации сахара в крови в результате усвоения глюкозы различными тканями и органами.

Гликоген откладывается также в мышцах. Общее количество гликогена в организме составляет 300 — 400 граммов. Как мы знаем, около 100-120 граммов вещества накапливается в клетках печени, а вот остальная часть (200-280 гр) сохраняется в мышцах и составляет максимум 1 — 2% от общей массы этих тканей.

Хотя если говорить максимально точно, то следует отметить, что гликоген хранится не в мышечных волокнах, а в саркоплазме — питательной жидкости, окружающей мышцы.

Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания, а снижается только во время физической нагрузки – длительной и/или напряженной.

При работе мышц под влиянием специального фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное распад гликогена в мышцах, который используется для обеспечения глюкозой работы самих мышц (мышечных сокращений). Таким образом, мышцы используют гликоген только для собственных нужд.

Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Гликоген печени и мышц используется для разных нужд, однако говорить о том, что какой-то из них важнее — абсолютнейший вздор и демонстрирует только вашу дикую неграмотность.


Все, что написано на данном скрине, полная ересь. Если вы боитесь фруктов и думаете, что они прямиком запасаются в жир, то никому не говорите этой чуши и срочно читайте статью Фруктоза: можно ли есть фрукты и худеть?

Важно знать, почему работают низкоуглеводные высокобелковые диеты. В организме взрослого может находиться около 400 граммов гликогена, а как мы помним, на каждый грамм резервной глюкозы приходится примерно 4 грамма воды.

Т.е. около 2 кг вашего веса — это масса гликогенного водного раствора. Кстати, поэтому мы активно потеем в процессе тренировок — организм расщепляет гликоген и при этом теряет в 4 раза больше жидкости.

Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

Для любых активных физических нагрузок (силовые упражнения в тренажерном зале, бокс, бег, аэробика, плавание и все, что заставляет вас потеть и напрягаться) организму нужно 100-150 граммов гликогена в каждый час активности. Потратив запасы гликогена, тело начинает разрушать сперва мышцы, затем жировую ткань.

Обратите внимание: если речь идет не о длительном полном голодании, запасы гликогена не истощаются полностью, потому что имеют жизненно важное значение. Без запасов в печени мозг может остаться без снабжения глюкозой, а это смертельно опасно, ведь мозг самый главный орган (а не попа, как некоторые думают).

Без запасов в мышцах сложно совершить интенсивную физическую работу, что в природе воспринимается как повышенный шанс быть съеденным/без потомства/замерзшим и т.д.

Тренировки истощают запасы гликогена, но не по схеме «первые 20 минут работаем на гликогене, потом переходим на жиры и худеем».

Для примера возьмем исследование, в котором тренированные атлеты выполняли 20 сетов упражнений на ноги (4 упражнения, 5 сетов каждого; каждый сет выполнялся до отказа и составлял 6-12 повторений; отдых был коротким; общее время тренировки составило 30 минут).

Кто знаком с силовыми тренировками, понимает, что было отнюдь не легко. До и после упражнения у них брали биопсию и смотрели содержание гликогена. Оказалось, что количество гликогена снизилось с 160 до 118 ммоль/кг, т. е. менее, чем на 30%.

Вот так походя мы развеяли еще один миф — вряд ли за тренировку вы успеете исчерпать все запасы гликогена, так что не стоит набрасываться на еду прямо в раздевалке среди потных кроссовок и посторонних тел, вы явно не помрете от «неминуемого» катаболизма.

Кстати, пополнять запасы гликогена стоит не в течении 30 минут после тренировки ( увы, белково-углеводное окно – миф ), а в течении 24 часов.

Люди крайне преувеличивают скорость истощения гликогена (как и многие другие вещи)! Любят сразу на тренировке закинуться «углями» после первого разминочного подхода с грифом пустым, а то ж «истощение мышечного гликогена и КАТАБОЛИЗМ». Прилег на час днем и усе, печеночного гликогена как не бывало.

Мы уж молчим про катастрофические энергозатраты от 20минутного черепашьего бега. Да и вообще, мышцы жрут чуть не 40 ккал на 1 кг, белок гниет, образует слизь в жкт и провоцирует рак, молочка заливает так, что аж 5 лишних кило на весах (не жира, ага), жиры вызывают ожирение, углеводы смертельно опасны (боюсь-боюсь) и от глютена вы точно помрете.

Странно только, что мы вообще ухитрились выжить в доисторические времена и не вымерли, хотя питались явно не амброзией и спортпитом.

Помните, пожалуйста, что природа умнее нас и давно все при помощи эволюции отрегулировала. Человек один из самых адаптированных и приспосабливаемых организмов, который способен существовать, размножаться, выживать. Так что без психозов, господа и дамы.

Однако тренироваться на пустой желудок более чем бессмысленно.»Что же делать?» подумаете вы. Ответ вы узнаете в статье «Кардио: когда и зачем?» , которая расскажет вам о последствиях голодных тренировок.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 48-60 часов полного голодания запасы гликогена в печени полностью истощаются.

Гликоген мышц расходует во время физической активности. И тут мы опять вернемся к мифу: «Чтобы сжечь жир, нужно бегать не менее 30 минут, поскольку только на 20-й минуте в организме истощаются запасы гликогена и в качестве топлива начинает использоваться подкожный жир», только с чисто математической стороны. Откуда это пошло? А пес его знает!

Действительно, организму проще использовать гликоген, чем окислять жир для энергии, поэтому в первую очередь расходуется он. Отсюда и миф: надо сначала израсходовать ВЕСЬ гликоген, и потом жир начнет гореть, а произойдет это примерно через 20 минут после начала аэробной тренировки. Почему 20? Понятия не имеем.

НО: никто не учитывает, что использовать весь гликоген не так-то просто и 20-ю минутами тут дело не ограничится.

Как мы знаем, общее количество гликогена в организме составляет 300 — 400 граммов, а в некоторых источниках говорится о 500 граммах, что дает нам от 1200 до 2000 ккал! Вы вообще представляете, сколько нужно бегать, чтобы истощить такую прорву калорий? Человек весом в 60 кг должен будет пробежать в среднем темпе от 22 до З5 километров. Ну как, готовы?

Истощила гликоген ?

источник

Получила интересный вопрос – «А что если была силовая тренировка на верх тела (грудь/спина/руки…), то есть ноги были не задействованы, соответственно запас гликогена в них остался, а после силовой ты пошла на беговую дорожку, то жир «гореть» не будет, т.к. в ногах остался гликоген, и именно его будет использовать организм, так?»

Что такое гликоген?

Гликоген – это форма хранения углеводов в организме. В основном гликоген запасается в печени и мышцах. Печень ответственна за большое количество важных функций, в т.ч. и за углеводный обмен. Концентрация гликогена в печени выше, чем в мышцах (10% против 2% от веса тканей органов), но все же больше гликогена содержится именно в мышцах, так как их масса больше. Кстати, другие ткани и органы нашего тела – мозг, почки, сердце и т.д., так же содержат запасы гликогена, но ученые не пришли к окончательному выводу, относительно их функций. Гликоген в печени и скелетных мышцах выполняют разные функции.

Гликоген из печени преимущественно необходим для регуляции уровня глюкозы в крови в период голодания, дефицита калорий.

Гликоген из мышц обеспечивает глюкозой мышечные волокна во время сокращения мышц.

Соответственно, содержание гликогена в печени уменьшается во время голодания, дефицита калорий, а содержание мышечного гликогена уменьшается во время тренировки в «рабочих» мышцах. Но только ли в «рабочих» мышцах?

Гликоген и работа мышц.

Было проведено несколько исследований (в конце статьи оставлю ссылку на полный обзор всех источников), в ходе которых была проведена биопсия скелетных мышц после выполнения интенсивной физической нагрузки у группы добровольцев. Выявлено, что в «рабочих» мышцах уровень гликогена значительно снижается во время выполнения упражнений, в то время как уровень гликогена в неактивных мышцах остается неизменным. Кстати, выносливость напрямую связана с уровнями гликогена в мышцах, усталость развивается, когда истощается запас гликогена в активных мышцах (поэтому не забываем есть перед тренировкой часа за 2, чтобы показать максимальный результат).

Читайте также:  Можно ли пельмени с больной печенью

Так значит жир не будет «гореть» на беговой дорожке после тренировки верха, так как в мышцах ног останется запас гликогена? На самом деле будет, и вот почему:

  1. В статье «О количестве подходов, повторений и весах… Или как растут мышцы?», я уже затрагивала тему о типах мышечных волокон (МВ) и их энергообеспечении. Так вот при аэробной работе (когда используется кислород) окислительные МВ используют жир в качестве источника энергии, как пример – тот самый бег на пульсе жиросжигания (когда при беге дыхание ровное, нет отдышки, даже можно разговаривать и при этом не задыхаться).
  2. Гликогеновый запас по калориям не настолько емок, как запас триглицеридов (жиров). А повышенная концентрация свободных жирных кислот в плазме крови способствует сохранению гликогена скелетных мышц во время тренировок.

В подтверждение вот еще одно исследование: Vukovich M.D., Costill D.L., Hickey M.S., Trappe S.W., Cole K.J., Fink W.J. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J. Appl. Physiol.(1985) 1993

Участников эксперимента разделили на две группы. Первой группе приготовили перед тренировкой насыщенный жирными кислотами прием пищи (взбитые сливки, 90 гр.), вторая группа съела легкий завтрак (где были в основном одни углеводы и только 1 гр. жира). После часового кардио были сделаны замеры уровня гликогена в активных мышцах. Та группа, которая перед тренировкой получила насыщенный жирными кислотами прием пищи, потратила на 26% меньше гликогена в активных мышцах.

Ниже иллюстрация того, как через определенное время (с момента начала тренировки) организм теряет запасы гликогена и все больше переходит на жир, как источник энергии:

Триглицериды (жиры) в плазме крови (в кровь эти жирные кислоты попадают после еды, либо высвобождаются во время отдыха из подкожного жира, но при условии дефицита калорий) и триглицериды, запасенные мышечной тканью (наподобие гликогена) – основные источники энергообеспечения мышц жирными кислотами. То есть, подкожный жир напрямую не горит на беговой дорожке, горит тот жир, что вы съели перед тренировкой, либо тот жир, который уже находится в мышцах, а попадает он туда из подкожного, только при условии дефицита калорий. И еще, чем более тренированный человек, тем больше его мышцы способны «сжечь» запасов жиров и углеводов за тренировку.

А что если не есть углеводы, чтобы запасы гликогена были минимальны и быстрее «горел» жир?

Как я уже писала, мышцы – это не единственный потребитель углеводов, тот же мозг ежедневно требует около 75-100 гр. глюкозы, вынь да полож (а еще есть сердце, печень, жировая ткань, да, да даже она потребляет углеводы). И если мышцам, а надо понимать, что они не первые в очереди за углеводами, не хватает глюкозы для ресинтеза гликогена, то «включается» процесс неоглюкогенез (опять сложное слово!), то есть мышцы начинают разрушаться. Поэтому советую не опускать значение потребление углеводов ниже 100 гр. в сутки.

Что ж, в итоге жир будет «гореть» на беговой дорожке после тренировки верха, даже несмотря на то, что в мышцах ног останется запас гликогена. Но сначала «сгорят» триглицериды в мышцах, плазме крови, потом вы придете домой, закончите день с небольшим дефицитом калорий (а не съедите все что попадет под руку со словами — «а что, после тренировки все ж можно…»), уснете, организм поймет, что образовалась нехватка энергии, метаболизирует из подкожного жира триглицериды, которые попадут сначала в кровь, а потом в мышцы. Все. Осталось повторить цикл еще разок, два или три… ну вы поняли ?

источник

Известно, что энергию животные и человек получают за счет окисления сложных органических соединений. В клетках организма сложные вещества распадаются на простые, выделяя энергию, затраченную на их синтез. Организм получает энергию преимущественно за счет гликолиза и дыхания, в процессе которых энергия запасается в виде молекул АТФ. Подавляющее число молекул АТФ образуется при дыхании, поэтому человек и животные без кислорода не могут существовать. Величину полученной организмом энергии принято определять по количеству кислорода, потребленному в процессе дыхания. При больших физических нагрузках интенсивность дыхания значительно усиливается.

Однако способность человека к выполнению работы (нагрузки) в течение дня существенно изменяется. Утром, после хорошего отдыха, человека может выполнить большой объем работы, а вечером он не способен к интенсивной нагрузке. При этом интенсивность дыхания утром и вечером у человека меняется незначительно. Из этого можно сделать заключение о том, что утром у человека имеется резерв энергии, за счет которой он способен к большому объему работы, а к вечеру этот резерв истощается и работоспособность организма резко уменьшается.

Во всех клеток организма протекает огромное количество биохимических реакций, интенсивность которых зависит от величины испытываемой нагрузки. Энергия для таких реакций поставляется молекулами АТФ, которые синтезируются в митохондриях и обеспечивают энергией все реакции, протекающие в клетке. Поэтому ученые давно ведут поиски запасов молекул АТФ в организме, которые могут быть использованы организмом в критических ситуациях, требующих усиления энергообеспечения. Исследования показали, однако, что резервуара, в котором могли бы находится готовые к использованию молекулы АТФ, в организме нет. Все молекулы АТФ находятся в клетках. Однако существует возможность передачи этих молекул из клетки в клетку через щелевые контакты. Щелевые контакты, представляющие щель шириной около 3 микрон между клетками, участвуют в межклеточной коммуникации, позволяя неорганическим ионам и другим малым молекулам прямо переходить из одной клетки в цитоплазму другой, обеспечивая электрическое и метаболическое сопряжение. При помощи коннексонов, соединяющих мембраны соседних клеток, образуется непрерывный водный канал, через который клетки могут делиться с соседними клетками молекулами АТФ. Это позволяет организму обеспечивать энергией те звенья многоклеточной структуры, которые нуждаются в дополнительной энергии. Такое обеспечение осуществимо при наличии большого количества небольших подвижных клеток, легко проникающих во все точки многоклеточного организма. Установлено, что большинство клеток у ранних эмбрионов сообщается через щелевые контакты, что позволяет развивающемуся организму активизировать различные участки эмбриогенеза без существенного изменения системы кровоснабжения.

Функции клеток, обеспечивающих энергоснабжение интенсивно делящихся клеток, могут выполнять малые лимфоциты, возникающие в период раннего эмбриогенеза. Их количество быстро нарастает в эмбриональный и постнатальный период. В настоящее время принято считать, что лимфоциты в организме выполнят только иммунную функцию, защищая организм при появлении чужеродных антигенов. Однако в этом случае трудно объяснить появление лимфоцитов на ранних стадиях эмбриогенеза, когда эмбрион находится под защитой материнского иммунитета. К тому же количество лимфоидных узелков во всех органах человека начинает снижаться достаточно рано (с 7-16 лет), когда заканчивается формирование основных структур человеческого организма. Однако необходимость иммунной защиты организма человека с возрастом не уменьшается, и с позиции необходимости иммунной защиты такое снижение трудно объяснить.

В настоящее время принято связывать сон с отдыхом клеток головного мозга. Но почему не требуется отдых клеткам сердца, легких, печени. ЖКТ и других органов, которые функционируют круглосуточно? По нашему мнению ночное снижение деятельности клеток головного мозга и мышечной ткани связано с необходимостью пополнения запаса энергии, усиленно расходуемого в дневное время. Во время отдыха организм снижает кровообращение в головном мозге, мышцах и за счет этого усиливает интенсивность деления клеток лимфоидной ткани, увеличивая количество клеток, обеспечивающих энергетические потребности организма.

Экспериментальные данные на животных свидетельствуют о снижении числа лимфоцитов в тимусе и селезенке утром и вечером, что не связано с выполнением иммунных функций, но может быть объяснено увеличением энергетических запросов организма. Любой вид стресса, который требует усиления энергозатрат, сопровождается снижением числа клеток в тимусе и селезенке. При этом лимфоциты из тимуса и селезенки направляются к клеткам, испытывающим наибольшие энергетические проблемы. Таким образом, существуют весомые предпосылки, чтобы рассматривать лимфоидную систему как структуру, предназначенную для энергообеспечения клеток организма.

источник

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой.

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Всю необходимую для жизнедеятельности энергию человек получает вместе с пищей. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

  • Углеводы – 4ккал (17кДж) на 1г
  • Белки (протеин) – 4ккал (17кДж) на 1г
  • Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Каким образом мы получаем энергию из пищи?

Обмен веществ и энергии (метаболизм) – совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэргических) соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из этих предшественников; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

АТФ клетки – разменная валюта. Для энергетического обмена клетки очень важны так называемые сопряженные химические реакции. В каждой такой реакции связываются воедино два различных процесса: один, сопровождающийся выделением энергии, и другой, требующий ее затрат. В результате оказывается, что первый (энергодающий) процесс становится движущей силой для второго процесса, потребляющего энергию.

В начале 40-х годов известный биохимик Ф. Липман высказал гипотезу, что различные реакции освобождения энергии в клетке всегда сопряжены с одной и той же реакцией, а именно синтезом АТФ из ее предшественников – аденозиндифосфорной кислоты (АДФ) и неорганической ортофосфорной кислоты (Н3РО4). С другой стороны, реакции расщепления (гидролиза) АТФ до АДФ и Н3РО4 сопряжены, по Липману, с совершением различных типов полезной работы. Другими словами, образование АТФ служит универсальным накопителем энергии, а расщепление АТФ – универсальным поставщиком энергий.

Было установлено, что внутриклеточное дыхание, то есть окисление водорода карбоновых кислот кислородом, сопряжено с синтезом АТФ. Образование АТФ было показано также при гликолизе (расщепление углеводов до молочной кислоты в отсутствие кислорода), В 50-е годы американский биохимик Д. Арнон продемонстрировал синтез АТФ у растений за счет энергии света.

Читайте также:  Каким образом печень участвует в углеводном обмене

В то же время были описаны многочисленные случаи энергообеспечения работы клетки за счет гидролиза АТФ. Выяснилось, что синтез белков, жиров, углеводов, нуклеиновых кислот из соответствующих мономеров «оплачивается» энергией АТФ. Было обнаружено расщепление АТФ сократительным мышечным белком. Это открытие позволило понять, каким образом обеспечивается энергией работа мышцы. К настоящему времени несомненна причастность АТФ также и ко многим другим процессам, потребляющим энергию.

Итак, клетка использует энергетические ресурсы, чтобы получить АТФ, а затем тратит этот АТФ, чтобы оплатить различные виды работы.

Первой системой, для которой выяснили механизм образования АТФ, оказался гликолиз – вспомогательный тип энергообеспечения, включающийся в условиях нехватки кислорода. При гликолизе молекула глюкозы расщепляется пополам и полученные обломки окисляются до молочной кислоты.

Такое окисление сопряжено с присоединением фосфорной кислоты к каждому из фрагментов молекулы глюкозы, то есть с их фосфорилированием. Последующий перенос фосфатных остатков с фрагментов глюкзы на АДФ дает АТФ.

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ состоит из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Как расходуется энергия во время физической нагрузки?

Начало физической нагрузки. В самом начале физической нагрузки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период физической нагрузки. В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период физической нагрузки. Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой, которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли. С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Печень – один из важных органов для жизнедеятельности. Главная ее задача – удаление токсинов из крови. Однако, на этом ее функции не заканчиваются. Клетки печени вырабатывают ферменты, необходимые для расщепления продуктов, поступающих вместе с пищей. Часть элементов накапливается в виде гликогена. Он является природным запасом полезной энергии для клеток. Хранится он в печени, мышцах.

Роль такого важного органа, как печень в углеводном обмене незаменима. Именно она перерабатывает жиры, углеводы, расщепляет токсины. Также она является основным поставщиком гликогена. Это сложный углевод, который состоит из молекул глюкозы. Образуется путем фильтрации и расщепления жиров и углеводов печенью. Является одной из форм накопления энергии в теле человека. Глюкоза – основное питательное вещество для клеток человеческого тела, а гликоген по сути — «хранилище» запаса этого элемента. Особенности обмена питательных веществ подразумевает постоянное нахождение в организме энергии.

Выяснив, что такое гликоген и как проходит биосинтез вещества, необходимо отметить его роль в жизни человека. Природный накопитель энергии начинает работать, когда в организме падает уровень глюкозы. Нормальным показателем считается 80-120 мг/дцл. Снижается уровень при повышенных нагрузках или длительном отсутствии поступлений извне – питания. Гликемическая функция запасов насыщать клетки организма глюкозой. Таким образом, вещество выполняет функцию источника быстрой энергии, которая необходима при повышенных физических нагрузках. Физиология человека такова, что организм сам защищает себя от критических ситуаций, высвобождая необходимые на данный момент ресурсы.

Главным «производителем» гликогена является печень. Её клетки производят синтез вещества и хранение. Ведущая роль печени в фильтрации крови и белковом обмене обусловлена способностью вырабатывать ферменты, необходимые для распада элементов. Именно здесь происходит расщепление жиров на молекулы и дальнейшая переработка.

Синтез гликогена производится непосредственно клетками печени и развивается по двум сценариям.

Первый механизм — это накопление вещества путем расщепления углеводов. После поступления пищи, уровень глюкозы поднимается выше нормы. Начинается естественная выработка инсулина для упрощения доставки питательного вещества для клеток организма и способствованию выработки гликогена. Инсулин попадает в кровоток, где и оказывает свое воздействие. Фермент амелаза расщепляет сложные углеводы на мелкие молекулы. Затем происходит деление глюкозы на простой сахар – моносахариды. Из них образуется гликоген и откладывается в клетках печени, в мышцах. Процесс синтеза из глюкозы происходит после каждого поступления еды, которая содержит углеводы.

Второй сценарий запускается в условиях голодания или повышенных физических нагрузок. По мере необходимости происходит обратный синтез, распад в скелетных мышцах и печени, основные запасы глюкозы используются для передачи энергии клеткам. Когда резервы истощаются, мозг получает импульсы о необходимости пополнения. Выражается это вялостью, усталостью, чувством голода, невозможностью сконцентрироваться. Такие сигналы свидетельствуют о критическом показателе запасов энергии, которые рекомендуется пополнить в ближайшее время.

Как было сказано выше, основной запас гликогена находится в печени. Количество его составляет до 8 процентов от массы органа. Учитывая, что вес здоровой печени у мужчин 1,5 кг, а у женщин 1,2 кг, то накапливается порядка 100-150 грамм. В зависимости от индивидуальных особенностей организма, этот показатель может отклонятся в большую или меньшую стороны. Например, у спортсменов накапливается до 300-400 грамм. Это обусловлено частыми физическими нагрузками, на которые необходима дополнительная энергия. Во время тренировок вырабатывается нехватка гликогена, поэтому организм начинает увеличивать запасы. У людей с малоподвижным образом жизни показатель может быть значительно ниже. Им не требуется постоянное включение дополнительной энергии для подпитки клеток, поэтому организм не делает больших запасов. Избыток в еде жира и нехватка углеводов, могут спровоцировать сбой в синтезе гликогена.

Вторая часть биологического склада гликогена расположена в мышцах. Количество вещества напрямую зависит от мышечной массы, масса его 1-2% от чистого веса мускулатуры. Гликоген снабжает энергией ту мышцу, где он накоплен. Мышечные накопления узкопрофильные, они не участвуют в регуляции сахара в крови организма. Увеличивается количество вещества от обильного питания, богатого углеводами. Снижается только после интенсивной или длительной физической нагрузки. За получение глюкозы отвечает фермент фосфорилаза, который вырабатывается при начале мышечных сокращений.

По мере накопления, гликоген откладывается в клетках печени. У каждого организма показатель максимального содержания индивидуален. Определение точного количества производится с помощью биохимического анализа тканей.

Перенасыщение углеводами приводит к образованию жировых включений в клетках печени. Если организм не может запасать быструю энергию – глюкозу, он откладывает медленную – жиры.

Рассмотрев клетки печени под микроскопом, можно увидеть содержание жировых включений. Окрашивание жиров с помощью реагентов, позволяет выделить их при среднем и большом увеличении. Это даст возможность различить частицы гликогена. Определение общего количества запасенной глюкозы происходит с помощью специального опыта.

Отклонения бывают двух видов – переизбыток вещества и дефицит. Оба не приносят ничего хорошего. При дефиците компонента происходит насыщение печени жирами. Избыточное количество жировых клеток на тканях печени приводит к структурным изменениям. В этом случае источником энергии служат не углеводы, а использование жиров. При такой патологии наблюдается следующая симптоматика:

  • Повышенное выделение пота на ладонях.
  • Частая головная боль.
  • Повышенная утомляемость.
  • Сонливость, заторможенная реакция.
  • Постоянное чувство голода.

Нормализовать состояние поможет увеличение приема углеводов и сахара.

Избыток влечет за собой повышенную выработку инсулина и ожирение тела. Возникнуть патология может при обильном количестве углеводов в диете. При отсутствии борьбы с ней, есть риск развития сахарного диабета закрытого типа. Для приведения в норму показателя гликогена, необходимо снизить потребление сахара и углеводов. Из-за наличия проблем с синтезом этого фермента, роль печени в важном обмене белков может быть нарушена, что ведет к более серьезным последствиям для здоровья.

Главенствующая роль печени в процессе обмена углеводов подкреплена выработкой и хранением дополнительной энергии. В гликоген перерабатываются только углеводы, поэтому крайне важно в рационе соблюдать их необходимое количество. Их доля должна составлять половину от общей калорийности принятой за день пищи. Богаты углеводами хлебобулочные изделия, злаки, каши, фрукты, сахар, шоколад. Люди, страдающие заболеваниями печени, должны составлять свою диету с особой осторожностью.

При выраженных патологиях выработки гликогена для нормализации могут использовать гормон инсулин. Он помогает поддерживать нормальное количество глюкозы в крови. Рекомендации к применению назначаются лечащим врачом после прохождения комплексного обследования. Это необходимо для выяснения причины, по которой выработка гликогена была нарушена.

источник